Neo and paleo virtual ornithology
Tapa del número actual
PDF (Spanish)

Keywords

finite element analysis
geometric morphometrics
paleoneurology
three-dimensional virtual models

Abstract

Visualization and analysis of fossils assisted by computers have revolutionized the study of extinct organisms. Innovative techniques allow to characterize the remains in three dimensions with unprecedented detail, allowing paleontologists to gain important knowledge about anatomy, development, function and even conservation. Digital reconstructions can be used in functional analysis and rigorous testing of hypotheses on the paleobiology of extinct organisms. These approaches are transforming our understanding about life in the past and also of living organisms in general. The use of noninvasive techniques enables capturing large amounts of data without damaging the specimens under study. As digital data can be shared instantly and globally, teams of scientists can work in parallel, accelerating research time. In this paper, cases in which virtual models were used to assess morphological problems are shown.

PDF (Spanish)

References

ABEL RL, RETTONDINI LAURINI C Y RICHTER M (2012) Apalaeobiologist’s guide to ‘virtual’ micro-CT prepa-ration. Palaeontologia Electronica 15:art15.2.6

ASHWELL KW Y SCOFIELD RP (2007) Big brains and theirpalaeoneurology of the New Zealand Moa. Brain,Behaviour and Evolution 71:151–166

BALANOFF AM Y ROWE TB (2007) Osteological descrip-tion of an embryonic skeleton of the extinctElephant bird, Aepyornis (Palaeognathae, Ratitae).Journal of Vertebrate Paleontology 27 (Suppl. 9):1–53

BLOCH R (1952) Goethe, idealistic morphology andscience. American Scientist 40:313–322

BOCK WJ YVON WAHLERT G (1965) Adaptation andthe form-function complex. Evolution 19:269–299

BOOKSTEIN FL (1991) Morphometric tools for landmarkdata: geometry and biology. Cambridge UniversityPress, CambridgeBRIGGS DEG (2005) Seilacher on the science of formand function. Pp. 3–24 en: BRIGGS DEG (ed) Evolvingform and function: fossils and development. Proceedingsof a symposium honoring Adolf Seilacher for his contri-butions to paleontology, in celebration of his 80th birthday.Yale University Press, New Haven

DEGRANGE FJ (2012) Morfología del cráneo y complejoapendicular en aves fororracoideas: implicancias en ladieta y modo de vida. Tesis doctoral, UniversidadNacional de La Plata, La Plata

DEGRANGE FJ, TAMBUSSI CP, MORENO K, WITMER LM YWROE S (2010) Mechanical analysis of feeding beha-vior in the extinct “terror bird’” Andalgalornis steulleti(Gruiformes: Phorusrhacidae). PLoS One 5:e11856

DOMÍNGUEZ ALONSO P, MILNER AC, KETCHAM RA,COOKSON MJ Y ROWE TB (2004) The avian natureof the brain and inner ear of Archaeopteryx. Na-ture 430:666–669

HOFFMANN R, SCHULTZ JA, SCHELLHORN R, RYBACKI E,KEUPP H, GERDEN SR, LEMANIS R Y ZACHOW S (2014)Non-invasive imaging methods applied to neo- andpaleo-ontological cephalopod research. Biogeo-sciences 11:2721–2739

HONEYCUTT CME, PLOTNICK RE Y KENIG F (2014)Breaking free from the matrix: segmentation of fossilimages. Palaeontologia Electronica 17:art17.3.1

IWANIUK AN Y HURD PL (2005) The evolution ofcerebro types in birds. Brain, Behaviour and Evolu-tion 65:215–230

KARDONG KV (2012) Vertebrates. Comparative anatomy,function, evolution. Sexta edición. McGraw-HillEducation, Nueva York

KAWABE S, ANDO T Y ENDO H (2014) Enigmatic affinityin the brain morphology between plotopterids andpenguins, with a comprehensive comparisonamong water birds. Zoological Journal of the LinneanSociety 170:467–493

KSEPKA DT, BALANOFF AM, WALSH S, REVAN A Y HO A(2012) Evolution of the brain and sensory organs inSphenisciformes: new data from the stem penguinParaptenodytes antarcticus. Zoological Journal of theLinnean Society 166:202–219

LAUTENSCHLAGER S, BRIGHT JA Y RAYFIELD EJ (2014)Digital dissection using contrast-enhanced com-puted tomography scanning to elucidate hard- andsoft-tissue anatomy in the Common Buzzard Buteobuteo. Journal of Anatomy 224:412–431

MILNER A Y WALSH S (2009) Avian brain evolution:new data from Palaeogene birds (Lower Eocene)from England. Zoological Journal of the Linnean Soci-ety155:198–219

MOAZEN M, CURTIS N, O’HIGGINS P, EVANS SE Y FAGANMJ (2009) Biomechanical assessment of evolutio-nary changes in the lepidosaurian skull. Proceedingsof the National Academy of Sciences106:8273–8277

MOSTO MC (2014) Estructura y función del complejoapendicular posterior en rapaces diurnas (Falconidae yAccipitridae). Tesis doctoral, Universidad Nacionalde La Plata, La Plata

PAULINA-CARABAJAL A, ACOSTA-HOSPITALECHE C YYURY-YÁÑEZ R (en prensa) Endocranial morphol-ogy of Pygoscelis calderensis (Aves, Spheniscidae)from the Neogene of Chile and remarks on brainmorphology in modern Pygoscelis. HistoricalBiologyPICASSO M, TAMBUSSI CP Y DEGRANGE FJ (2010) Virtualreconstructions of the endocranial cavity of Rheaamericana (Aves, Palaeognathae): postnatal anato-mical changes. Brain, Behaviour and Evolution76:176–184

RAYFIELD EJ (2004) Cranial mechanics and feeding inTyrannosaurus rex. Proceeding of the Royal Society B271:1451–1459

RAYFIELD EJ (2005) Using finite-element analysis toinvestigate suture morphology: a case study usinglarge carnivorous dinosaurs. Anatomical Record A283:349–365

RAYFIELD EJ (2007) Finite element analysis and under-standing the biomechanics and evolution of livingand fossil organisms. Annual Review of Earth andPlanetary Sciences 35:541–576

RAYFIELD EJ, NORMAN DB, HORNER CC, HORNER JR YSMITH PM (2001) Cranial design and function in alarge theropod dinosaur. Nature 409:1033–1037

ROHLF FJ (1990) Fitting curves to oulines. Pp. 167–177en: ROHLF FJ Y BOOKSTEIN FL (eds) Proceedings of theMichigan Morphometrics Workshop. The University ofMichigan Museum of Zoology, Ann Arbor

ROHLF FJ (1999) Shape statistics: Procrustes super-impositions and tangent spaces. Journal of Classifica-tion 16:197–223

ROHLF FJ Y MARCUS LF (1993) A revolution inmorphometrics. Trends in Ecology and Evolution8:129–132

SEILACHER A (1970) Arbeitskonzept zur Konstruktion-Morphologie. Lethaia 3:393–396

SMITH A Y CLARKE J (2012) Endocranial anatomy ofthe Charadriiformes: sensory system variation andthe evolution of wing-propelled diving. PLoS One7:e49584

SUTTON MD, RAHMAN I Y GARWOOD R (2014) Techniquesfor virtual palaeontology. Wiley-Blackwell, Chichester

TAMBUSSI CP, DEGRANGE FJ Y KSEPKA D (en prensa)Endocranial anatomy of Antarctic Eocene stem pen-guins: implications for sensory system evolution inSphenisciformes (Aves). Journal of VertebratePaleontology

TAMBUSSI CP, PICASSO M, DEGRANGE FJ, MOSTO MC YTONNI EP (2013) La anatomía y la osteología: desdeAristóteles a la actualidad. Revista del Museo de laPlata, Paleontología 13:1–7

TORO IBACACHE MV, MANRÍQUEZ SOTO G Y SUAZOGALDAMES I (2010) Morfometría geométrica y elestudio de las formas biológicas: de la morfologíadescriptiva a la morfología cuantitativa. InternationalJournal of Morphology 28:977–990

WALSH S Y MILNER A (2011) Halcyornis toliapicus (Aves:Lower Eocene, England) indicates advancedneuromorphology in Mesozoic Neornithes. Journalof Systematic Palaeontology 9:173–181

WROE S (2008) Cranial mechanics compared in extinctmarsupial and extant African lions using a finite-element approach. Journal of Zoology 274:332–339

WROE S, MORENO K, CLAUSEN P, MCHENRY C Y CURNOED (2007) High-resolution three-dimensional com-puter simulation of hominid cranial mechanics.Anatomical Record 290:1248–1255

ZELDITCH ML, SWIDERSKI D, SHEETS HD Y FINK WL(2004) Geometric morphometrics for biologists. A primer.Elsevier Academic Press, San Diego

ZOLLIKOFER CPE Y PONCEDE LEÓN MS (2005) Virtualreconstruction. A primer in computer-assisted paleonto-logy and biomedicine. Wiley, Hoboken

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Downloads

Download data is not yet available.