Estrategias de escape de aves en ambientes urbanos
Tapa del numero actual
PDF

Archivos suplementarios

PDF

Palabras clave

aves
comportamiento
estacionalidad
estrategia de escape
urbanización

Cómo citar

Bocelli, Mariana Lucia, Federico Morelli, Yanina Benedetti, and Lucas Leveau. 2022. “Estrategias De Escape De Aves En Ambientes Urbanos”. El Hornero 37 (2). https://doi.org/10.56178/eh.v37i2.395.

Resumen

Para huir de depredadores, las aves urbanas pueden elegir entre dos estrategias de escape: correr o volar. Estos comportamientos de huida presentan distintos costos para el individuo, teniendo el primero un menor gasto energético pero mayor riesgo de depredación y viceversa. Sin embargo, los factores que afectan la selección de una u otra estrategia han sido poco estudiados. Por lo tanto, el objetivo del estudio es analizar la variación de las diferentes estrategias de escape en aves en relación a factores intrínsecos (especie) o extrínsecos (variables ambientales, estación del año). Para esto, se investigaron los factores que influencian el comportamiento de huida de 433 individuos pertenecientes a 24 especies de aves urbanas. Se realizaron modelos lineales generalizados para determinar el efecto de los diferentes factores: cobertura vegetal e infraestructura, disturbios humanos, especie, estacionalidad, gregarismo, hábitat y tamaño del ave. La estrategia de vuelo fue preferentemente elegida durante la época reproductiva y cuando las aves formaban bandadas de mayor tamaño. A su vez, la probabilidad de seleccionar una u otra estrategia varió entre especies. Los resultados sugieren que el comportamiento de escape se ve influenciado por factores tanto intrínsecos como extrínsecos, y resaltan la capacidad de las aves para adaptar su comportamiento a las condiciones ambientales cambiantes.

PDF

Referencias

Bates D, Mächler M, Bolker B y Walker S (2014) Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823

Biondi LM, Fuentes GM, Córdoba RS, Bó MS, Cavalli M, Paterlini CA y García GO (2020) Variation in boldness and novelty response between rural and urban predatory birds: The Chimango Caracara, Milvago chimango as study case. Behavioural processes 173 104064. DOI: 10.1016/j.beproc.2020.104064

Blumstein DT (2006) Developing an evolutionary ecology of fear: how life history and natural history traits affect disturbance tolerance in birds. Animal behaviour 71(2): 389-399. DOI: 10.1016/j.anbehav.2005.05.010

Blumstein DT (2010) Flush early and avoid the rush: a general rule of antipredator behavior? Behavioral Ecology 21(3): 440-442. DOI: 10.1093/beheco/arq030

Blumstein DT (2019) What chasing birds can teach us about predation risk effects: past insights and future directions. Journal of Ornithology 160(2): 587-592

Blumstein DT, Fernández‐juricic E, Zollner PA y Garity SC (2005) Inter‐specific variation in avian responses to human disturbance. Journal of applied ecology 42(5): 943-953. DOI: 10.1111/j.1365-2664.2005.01071.x

Blumstein DT, Anthony LL, Harcourt R y Ross G (2003) Testing a key assumption of wildlife buffer zones: is flight initiation distance a species-specific trait? Biological conservation 110(1): 97-100. DOI: 10.1016/S0006-3207(02)00180-5

Bötsch Y, Tablado Z y Jenni L (2017) Experimental evidence of human recreational disturbance effects on bird-territory establishment. Proceedings of the Royal Society B: Biological Sciences 284(1858), 20170846. DOI: 10.1098/rspb.2017.0846

Brown JS y Kotler BP (2004) Hazardous duty pay and the foraging cost of predation. Ecology letters 7(10): 999-1014. DOI: 10.1111/j.1461-0248.2004.00661.x

Burnham KP y Anderson DR (2002) A practical information-theoretic approach. Model selection and multimodel inference

Butler PJ (1991) Exercise in birds. Journal of Experimental Biology 160(1): 233-262. DOI: 10.1242/jeb.160.1.233

Canevari M y Manzione M (2017) “Aves argentinas, Guía de campo digital”. Aves Argentinas/Asociación Ornitológica del Plata [Aplicación móvil]

Carrete M y Tella JL (2010) Individual consistency in flight initiation distances in Burrowing Owls: a new hypothesis on disturbance-induced habitat selection. Biology letters 6(2): 167-170

Cavalli M, Baladrón AV, Isacch JP, Biondi LM y Bó MS (2016) Differential risk perception of rural and urban Burrowing Owls exposed to humans and dogs. Behavioural Processes 124: 60-65

Ciuti S, Pipia A, Ghiandai F, Grignolio S y Apollonio M (2008) The key role of lamb presence in affecting flight response in Sardinian Mouflon (Ovis orientalis musimon). Behavioural Processes 77(3): 408-412. DOI: 10.1016/j.beproc.2007.09.001

Cooper WE (2003) Risk factors affecting escape behavior by the Desert Iguana, Dipsosaurus dorsalis: speed and directness of predator approach, degree of cover, direction of turning by a predator, and temperature. Canadian Journal of Zoology 81(6): 979-984. DOI: 10.1139/z03-079

Cooper WE, Pérez-Mellado V y Hawlena D (2007) Number, speeds, and approach paths of predators affect escape behavior by the Balearic Lizard, Podarcis lilfordi. Journal of Herpetology 41(2): 197-204. DOI: 10.1670/00221511(2007)41[197:NSAAPO]2.0.CO;2

Dearborn DC y Kark S (2010) Motivations for conserving urban biodiversity. Conservation biology 24(2): 432-440. DOI: 10.1111/j.1523-1739.2009.01328.x

Deviche P y Davies S (2014) Reproductive phenology of urban birds: environmental cues and mechanisms. Avian urban ecology: behavioural and physiological adaptations. Oxford University Press, Oxford: 98-115

Díaz M, Møller AP, Flensted-Jensen E, Grim T, Ibáñez-Álamo JD, Jokimäki J y Tryjanowski P (2013) The geography of fear: a latitudinal gradient in anti-predator escape distances of birds across Europe. PloS one 8(5), e64634. DOI: 10.1371/journal.pone.0064634

Domenici P y Blake RW (1993) Escape trajectories in Angelfish (Pterophyllum eimekei). Journal of Experimental Biology 177(1): 253-272. DOI: 10.1242/jeb.177.1.253

Fernández-Juricic E, Jimenez MD y Lucas E (2002) Factors affecting intra-and inter-specific variations in the difference between alert distances and flight distances for birds in forested habitats. Canadian Journal of Zoology 80(7): 1212-1220. DOI: 10.1139/z02-104

Fuller RA, Warren PH, Armsworth PR, Barbosa O y Gaston KJ (2008) Garden bird feeding predicts the structure of urban avian assemblages. Diversity and Distribution, 14(1): 131-137. DOI: 10.1111/j.1472-4642.2007.00439.x

Garamszegi LZ y Møller AP (2011) Nonrandom variation in within-species sample size and missing data in phylogenetic comparative studies. Systematic Biology 60(6): 876-880. DOI: 10.2307/41316585

García-Arroyo M y MacGregor-Fors I (2020) Tolerant to humans? Assessment of alert and flight initiation distances of two bird species in relation to sex, flock size, and environmental characteristics. Ethology Ecology & Evolution 32(5): 445-456

Gardener M (2017) Statistics for ecologists using R and Excel: Data collection, exploration, analysis and presentation. Pelagic Publishing Ltd.

Grant JW y Noakes DL (1987) Escape behaviour and use of cover by young-of-the-year Brook Trout, Salvelinus fontinalis. Canadian Journal of Fisheries and Aquatic Sciences 44(8): 1390-1396

Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84(11): 2809-2815. DOI: 10.1890/02-3114

Griffin AS (2004) Social learning about predators: a review and prospectus. Animal Learning & Behavior 32(1): 131-140

Ibáñez‐Álamo JD y Soler M (2010). Does urbanization affect selective pressures and life-history strategies in the Common Blackbird (Turdus merula L.)? Biological Journal of the Linnean Society 101(4): 759-766. DOI: 10.1111/j.1095-8312.2010.01543.x

Ibáñez‐Álamo JD, Rubio E, Benedetti Y y Morelli F (2017) Global loss of avian evolutionary uniqueness in urban areas. Global change biology 23(8): 2990-2998. DOI: 10.1111/gcb.13567

Kullberg C y Lafrenz M (2007) Escape take-off strategies in birds: the significance of protective cover. Behavioral Ecology and Sociobiology 61(10): 1555-1560

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.