Resumen
Para huir de depredadores, las aves urbanas pueden elegir entre dos estrategias de escape: correr o volar. Estos comportamientos de huida presentan distintos costos para el individuo, teniendo el primero un menor gasto energético pero mayor riesgo de depredación y viceversa. Sin embargo, los factores que afectan la selección de una u otra estrategia han sido poco estudiados. Por lo tanto, el objetivo del estudio es analizar la variación de las diferentes estrategias de escape en aves en relación a factores intrínsecos (especie) o extrínsecos (variables ambientales, estación del año). Para esto, se investigaron los factores que influencian el comportamiento de huida de 433 individuos pertenecientes a 24 especies de aves urbanas. Se realizaron modelos lineales generalizados para determinar el efecto de los diferentes factores: cobertura vegetal e infraestructura, disturbios humanos, especie, estacionalidad, gregarismo, hábitat y tamaño del ave. La estrategia de vuelo fue preferentemente elegida durante la época reproductiva y cuando las aves formaban bandadas de mayor tamaño. A su vez, la probabilidad de seleccionar una u otra estrategia varió entre especies. Los resultados sugieren que el comportamiento de escape se ve influenciado por factores tanto intrínsecos como extrínsecos, y resaltan la capacidad de las aves para adaptar su comportamiento a las condiciones ambientales cambiantes.
Referencias
Bates D, Mächler M, Bolker B y Walker S (2014) Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823
Biondi LM, Fuentes GM, Córdoba RS, Bó MS, Cavalli M, Paterlini CA y García GO (2020) Variation in boldness and novelty response between rural and urban predatory birds: The Chimango Caracara, Milvago chimango as study case. Behavioural processes 173 104064. DOI: 10.1016/j.beproc.2020.104064
Blumstein DT (2006) Developing an evolutionary ecology of fear: how life history and natural history traits affect disturbance tolerance in birds. Animal behaviour 71(2): 389-399. DOI: 10.1016/j.anbehav.2005.05.010
Blumstein DT (2010) Flush early and avoid the rush: a general rule of antipredator behavior? Behavioral Ecology 21(3): 440-442. DOI: 10.1093/beheco/arq030
Blumstein DT (2019) What chasing birds can teach us about predation risk effects: past insights and future directions. Journal of Ornithology 160(2): 587-592
Blumstein DT, Fernández‐juricic E, Zollner PA y Garity SC (2005) Inter‐specific variation in avian responses to human disturbance. Journal of applied ecology 42(5): 943-953. DOI: 10.1111/j.1365-2664.2005.01071.x
Blumstein DT, Anthony LL, Harcourt R y Ross G (2003) Testing a key assumption of wildlife buffer zones: is flight initiation distance a species-specific trait? Biological conservation 110(1): 97-100. DOI: 10.1016/S0006-3207(02)00180-5
Bötsch Y, Tablado Z y Jenni L (2017) Experimental evidence of human recreational disturbance effects on bird-territory establishment. Proceedings of the Royal Society B: Biological Sciences 284(1858), 20170846. DOI: 10.1098/rspb.2017.0846
Brown JS y Kotler BP (2004) Hazardous duty pay and the foraging cost of predation. Ecology letters 7(10): 999-1014. DOI: 10.1111/j.1461-0248.2004.00661.x
Burnham KP y Anderson DR (2002) A practical information-theoretic approach. Model selection and multimodel inference
Butler PJ (1991) Exercise in birds. Journal of Experimental Biology 160(1): 233-262. DOI: 10.1242/jeb.160.1.233
Canevari M y Manzione M (2017) “Aves argentinas, Guía de campo digital”. Aves Argentinas/Asociación Ornitológica del Plata [Aplicación móvil]
Carrete M y Tella JL (2010) Individual consistency in flight initiation distances in Burrowing Owls: a new hypothesis on disturbance-induced habitat selection. Biology letters 6(2): 167-170
Cavalli M, Baladrón AV, Isacch JP, Biondi LM y Bó MS (2016) Differential risk perception of rural and urban Burrowing Owls exposed to humans and dogs. Behavioural Processes 124: 60-65
Ciuti S, Pipia A, Ghiandai F, Grignolio S y Apollonio M (2008) The key role of lamb presence in affecting flight response in Sardinian Mouflon (Ovis orientalis musimon). Behavioural Processes 77(3): 408-412. DOI: 10.1016/j.beproc.2007.09.001
Cooper WE (2003) Risk factors affecting escape behavior by the Desert Iguana, Dipsosaurus dorsalis: speed and directness of predator approach, degree of cover, direction of turning by a predator, and temperature. Canadian Journal of Zoology 81(6): 979-984. DOI: 10.1139/z03-079
Cooper WE, Pérez-Mellado V y Hawlena D (2007) Number, speeds, and approach paths of predators affect escape behavior by the Balearic Lizard, Podarcis lilfordi. Journal of Herpetology 41(2): 197-204. DOI: 10.1670/00221511(2007)41[197:NSAAPO]2.0.CO;2
Dearborn DC y Kark S (2010) Motivations for conserving urban biodiversity. Conservation biology 24(2): 432-440. DOI: 10.1111/j.1523-1739.2009.01328.x
Deviche P y Davies S (2014) Reproductive phenology of urban birds: environmental cues and mechanisms. Avian urban ecology: behavioural and physiological adaptations. Oxford University Press, Oxford: 98-115
Díaz M, Møller AP, Flensted-Jensen E, Grim T, Ibáñez-Álamo JD, Jokimäki J y Tryjanowski P (2013) The geography of fear: a latitudinal gradient in anti-predator escape distances of birds across Europe. PloS one 8(5), e64634. DOI: 10.1371/journal.pone.0064634
Domenici P y Blake RW (1993) Escape trajectories in Angelfish (Pterophyllum eimekei). Journal of Experimental Biology 177(1): 253-272. DOI: 10.1242/jeb.177.1.253
Fernández-Juricic E, Jimenez MD y Lucas E (2002) Factors affecting intra-and inter-specific variations in the difference between alert distances and flight distances for birds in forested habitats. Canadian Journal of Zoology 80(7): 1212-1220. DOI: 10.1139/z02-104
Fuller RA, Warren PH, Armsworth PR, Barbosa O y Gaston KJ (2008) Garden bird feeding predicts the structure of urban avian assemblages. Diversity and Distribution, 14(1): 131-137. DOI: 10.1111/j.1472-4642.2007.00439.x
Garamszegi LZ y Møller AP (2011) Nonrandom variation in within-species sample size and missing data in phylogenetic comparative studies. Systematic Biology 60(6): 876-880. DOI: 10.2307/41316585
García-Arroyo M y MacGregor-Fors I (2020) Tolerant to humans? Assessment of alert and flight initiation distances of two bird species in relation to sex, flock size, and environmental characteristics. Ethology Ecology & Evolution 32(5): 445-456
Gardener M (2017) Statistics for ecologists using R and Excel: Data collection, exploration, analysis and presentation. Pelagic Publishing Ltd.
Grant JW y Noakes DL (1987) Escape behaviour and use of cover by young-of-the-year Brook Trout, Salvelinus fontinalis. Canadian Journal of Fisheries and Aquatic Sciences 44(8): 1390-1396
Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84(11): 2809-2815. DOI: 10.1890/02-3114
Griffin AS (2004) Social learning about predators: a review and prospectus. Animal Learning & Behavior 32(1): 131-140
Ibáñez‐Álamo JD y Soler M (2010). Does urbanization affect selective pressures and life-history strategies in the Common Blackbird (Turdus merula L.)? Biological Journal of the Linnean Society 101(4): 759-766. DOI: 10.1111/j.1095-8312.2010.01543.x
Ibáñez‐Álamo JD, Rubio E, Benedetti Y y Morelli F (2017) Global loss of avian evolutionary uniqueness in urban areas. Global change biology 23(8): 2990-2998. DOI: 10.1111/gcb.13567
Kullberg C y Lafrenz M (2007) Escape take-off strategies in birds: the significance of protective cover. Behavioral Ecology and Sociobiology 61(10): 1555-1560
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.