Resumen
La etapa de crecimiento posnatal es clave en el ciclo de vida de los individuos ya que la variación en las trayectorias de crecimiento y los fenotipos juveniles resultantes pueden afectar directamente a las habilidades competitivas, la supervivencia y el éxito de apareamiento futuro, lo que se refleja en última instancia en términos de eficacia biológica. En este sentido, a pesar de que diferentes aspectos del crecimiento corporal han sido estudiados en aves en general y aves marinas en particular, los estudios realizados en aves marinas sudamericanas son escasos. Aquí, presento una síntesis de causas próximas, últimas, e implicancias de la variación en el crecimiento corporal en aves marinas, abordando además la utilidad de algunas herramientas estadísticas para su estudio. Asimismo, planteo una revisión bibliográfica de la información existente para la región, identificando aspectos de interés a ser considerados en futuros estudios.
Referencias
Aldredge RA (2016) Using non-linear mixed effects models to identify patterns of chick growth in House Sparrows Passer domesticus. Ibis 158:16–27. https://doi.org/10.1111/ibi.12312
Anderson DJ, Reeve J, Gomez JEM, Weathers WW, Hutson S, Cunningham HV, Bird DM (1993) Sexual size dimorphism and food requirements of nestling birds. Canadian Journal of Zoology 71:2541–2545. https://doi.org/10.1139/z93-347
Andreasson F, Nilsson J-Å, Nord A (2020) Avian reproduction in a warming world. Frontiers in Ecology and Evolution 8:576331. https://doi.org/10.3389/fevo.2020.576331
Barrionuevo M, Ciancio J, Marchisio N, Frere E (2018) Parental body condition and high energy value of fish determine nestling success in Magellanic penguin (Spheniscus magellanicus). Marine Biology 165:105. https://doi.org/10.1007/s00227-018-3358-3
Barrionuevo M, Ferreti V, Ciancio J, Frere E (2021) Sex‑specific costs of rearing a nestling and its implications in the brood sex ratio of Magellanic penguins. Marine Biology 168:125. https://doi.org/10.1007/s00227-021-03906-y
Barrionuevo M, Frere E (2014) Parental investment in eggs and its effect on nestling growth and survival in Magellanic penguins. Emu – Austral Ornithology 114:259–267. https://doi.org/10.1071/MU13067
Barrionuevo M, Frere E (2017) An experimental approach to the brood reduction hypothesis in Magellanic penguins. Journal of Avian Biology 48:1077–1086. https://doi.org/10.1111/jav.01200
Bertellotti M, Tella JL, Godoy JA, Blanco G, Forero MG, Donázar JA, Ceballos O (2002) Determining sex of Magellanic Penguins using molecular procedures and discriminant functions. Waterbirds 25:479–484. https://doi.org/10.1675/1524-4695(2002)025[0479:DSOMPU]2.0.CO;2
Boersma PD (1992) Asynchronous hatching and food allocation in the Magellanic penguin Spheniscus magellanicus. Proceedings of the International Ornithological Congress 20:961–973
Boersma PD, Stokes DL (1995) Mortality patterns, hatching asynchrony, and size asymmetry in Magellanic Penguin Spheniscus magellanicus chicks. Pp. 3-25 en: Dann P, Norman I, Reilly P (eds) The penguins: ecology and management. Surrey Beatty & Sons, Chipping Norton, NSW, Australia
Bolton M (1991) Determinants of chick survival in the Lesser Black-backed Gull: relative contributions of egg size and parental quality. Journal of Animal Ecology 60:949–960. https://doi.org/10.2307/5424
Calderón L, Svagelj WS, Quintana F, Lougheed S, Tubaro P (2012) No evidence of extra-pair paternity or intraspecific brood parasitism in the Imperial Shag Phalacrocorax atriceps. Journal of Ornithology 153:399–404. https://doi.org/10.1007/s10336-011-0754-6
Castro N (2005) Variación temporal del éxito reproductivo del Pingüino de Humboldt Spheniscus humboldti (Meyen, 1834) en Punta San Juan, Marcona Perú (2000–2003). Tesis de Licenciatura. Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima, Perú
Clutton-Brock TH (1991) The evolution of parental care. Princeton University Press
Clutton-Brock TH, Albon SD, Guinness FE (1985) Parental investment and sex differences in juvenile mortality in birds and mammals. Nature 313:131–133. https://doi.org/10.1038/313131a0
Copello S, Quintana F, Somoza G (2006) Sex determination and sexual size-dimorphism in Southern Giant-Petrels (Macronectes giganteus) from Patagonia, Argentina. Emu 106:141–146. https://doi.org/10.1071/MU05033
Coslovsky M, Richner H (2011) Predation risk affects offspring growth via maternal effects. Functional Ecology 25:878–888. https://doi.org/10.1111/j.1365-2435.2011.01834.x
Coulson JC, Porter JM (1985) Reproductive success of the Kittiwake Rissa tridactyla: the roles of clutch size, chick growth rates and parental quality. Ibis 127:450–466. https://doi.org/10.1111/j.1474-919X.1985.tb04841.x
Croxall JP (1995) Sexual size dimorphism in seabirds. Oikos 73:399–403. https://doi.org/10.2307/3545964
Dantas GPM, Morgante JS (2010) Breeding biology of Kelp Gull on the Brazilian coast. Wilson Journal of Ornithology 122:39–45. https://doi.org/10.1676/08-104.1
Daunt F, Monaghan P, Wanless S, Harris MP, Griffiths R (2001) Sons and daughters: age-specific differences in parental rearing capacities. Functional Ecology 15:211–216
Diamond AW, Schreiber EA (2002) Magnificent frigatebird (Fregata magnificens). En: Pool A (ed) The birds of North America Online. Cornell Lab of Ornithology, Ithaca
Duffy DC, Ricklefs RE (1981) Observations on growth of Blue-footed Boobies and development of temperature regulation in Peruvian Guano Birds. Journal of Field Ornithology 52:332–336
Ellegren H (1996) First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds. Proceedings of the Royal Society of London B: Biological Sciences 263:1635–1641. https://doi.org/10.1098/rspb.1996.0239
Fairbairn J, Shine R (1993) Patterns of sexual size dimorphism in seabirds of the Southern Hemisphere. Oikos 68:139–145. https://doi.org/10.2307/3545319
Finco EM, Marcato SM, Furlan AC, Rossi RM, Grieser DdeO, Zancanela V, Oliveira TMM, Stanquevis CE (2016) Adjustment of four growth models through Bayesian inference on weight and body nutrient depositions in laying quail. Revista Brasileira de Zootecnia 45:737–744. https://doi.org/10.1590/S1806-92902016001200002
Frere E, Quintana F, Gandini P (2005) Cormoranes de la costa patagónica: estado poblacional, ecología y conservación. Hornero 20:35–52
Gallo L, Quintana F, Svagelj WS, Uhart M (2017) Plasma biochemistries and morphometric indices of body condition in Imperial Cormorant (Phalacrocorax atriceps) chicks. Waterbirds 40:118–128. https://doi.org/10.1675/063.040.0204
Gebhardt-Henrich S, Richner H (1998) Causes of growth variation and its consequences for fitness. Pp. 324-339 en: Starck J, Ricklefs RE (eds) Avian growth and development: evolution within the altricial-precocial spectrum. Oxford University Press
Gil D, Bulmer E, Celis P, López I (2008) Adaptive developmental plasticity in growing nestlings: sibling competition induces differential gape growth. Proceedings of the Royal Society of London B: Biological Sciences 275:549–554. https://doi.org/10.1098/rspb.2007.1360
Giudici PI, Quintana F, Svagelj WS (2017) The role of hatching asynchrony in a seabird species exhibiting obligate brood reduction. Waterbirds 40:221–232. https://doi.org/10.1675/063.040.0304
Glassey B, Forbes S (2002) Begging and asymmetric nestling competition. Pp. 269-281 en: Wright J, Leonard ML (eds) The evolution of begging: competition, cooperation and communication. Kluwer Academic Publishers, Netherlands
Gownaris NJ, Boersma PD (2021) Feet first: adaptive growth in Magellanic penguin chicks. Ecology and Evolution 11:4339–4352. https://doi.org/10.1002/ece3.7331
Guerra CG, Cikutovic MA (1983) Algunos aspectos de la nidificación y el crecimiento de Pelecanus occidentalis thagus Molina, 1782 en el norte de Chile. Proceedings of the First Simposium of Neotropical Ornithology 33-48
Guerra CG, Fitzpatrick LC, Aguilar RE (1988) Influence of desert nesting and foraging distance on growth rates in Gray Gulls (Larus modestus). Auk 105:779–783
Hamer KC, Schreiber EA, Burger J (2002) Breeding biology, life histories, and life-history environment interactions in seabirds. Pp. 217–261 en: Schreiber EA, Burger J (eds) Biology of marine birds. CRC Press, Florida, USA
Hardy ICW (2002) Sex ratios. Concepts and research methods. Cambridge University Press
Harris MP, Halley DJ, Wanless S (1992) The post-fledging survival of young Guillemots Uria aalge in relation to hatching date and growth. Ibis 134:335–339. https://doi.org/10.1111/j.1474-919X.1992.tb08012.x
Hector KL, Nakagawa S (2012) Quantitative analysis of compensatory and catch-up growth in diverse taxa. Journal of Animal Ecology 81:583–593. https://doi.org/10.1111/j.1365-2656.2011.01942.x
Hoyo J, Elliot A, Sargatal J, Christie DA (1992) Handbook of the Birds of the World. Vol. 1: Ostrich to Ducks. Lynx Edicions, Barcelona, España
Hoyo J, Elliot A, Sargatal J, Christie DA (1996) Handbook of the Birds of the World. Vol. 3: Hoatzin to Auks. Lynx Edicions, Barcelona, España
Huin N, Prince PA (2000) Chick growth in albatrosses: curve fitting with a twist. Journal of Avian Biology 31:418–425. https://doi.org/10.1034/j.1600-048X.2000.310318.x
IPCC (2021) Summary for policymakers. Pp 3–32 en: Masson-Delmotte V et al. (eds) Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, UK
Jahncke J, Goya E (1998) Biología reproductiva del Potoyunco peruano Pelecanoides garnotii en Isla La Vieja, costa central del Perú. Boletín del Instituto del Mar del Perú 17:67–74
Jahncke J, Paz-Soldán L (1998) La biología reproductiva de las aves guaneras y sus relaciones con la disponibilidad de anchoveta. Boletín del Instituto del Mar del Perú 17:55–66
Jobling M (2010) Are compensatory growth and catch-up growth two sides of the same coin? Aquaculture International 18:501–510. https://doi.org/10.1007/s10499-009-9260-8
Johnson LS, Wimmers LE, Campbell S, Hamilton L (2003) Growth rate, size, and sex ratio of last-laid, last-hatched offspring in the tree swallow Tachycineta bicolor. Journal of Avian Biology 34:35–43. https://doi.org/10.1034/j.1600-048X.2003.02950.x
Kalmbach E, Becker PH (2005) Growth and survival of Neotropic Cormorant (Phalacrocorax brasilianus) chicks in relation to hatching order and brood size. Journal of Ornithology 146:91–98. https://doi.org/10.1007/s10336-004-0061-6
Kalmbach E, Benito MM (2007) Sexual size dimorphism and offspring vulnerability in birds. Pp. 133-142 en: Fairbairn DJ, Blanckenhorn WU, Székely T (eds). Sex, size and gender roles - Evolutionary studies of sexual size dimorphism. Oxford University Press
Kalmbach E, Furness RW, Griffiths R (2005) Sex-biased environmental sensitivity: natural and experimental evidence from a bird species with larger females. Behavioral Ecology 16:442–449. https://doi.org/10.1093/beheco/ari018
Kalmbach E, Griffiths R, Furness RW (2009) Sex-specific growth patterns and effects of hatching condition on growth in the reversed sexually size-dimorphic Great Skua Stercorarius skua. Journal of Avian Biology 40:358–368. https://doi.org/10.1111/j.1600-048X.2008.04339.x
Kasinsky T, Suárez N, Yorio P (2022) Evaluación de parámetros reproductivos de la Gaviota Cocinera (Larus dominicanus) en una de las mayores colonias de Patagonia, Argentina. Hornero 37:37–50
Keogan K, Daunt F, Wanless S, Phillips RA, Walling CA, Agnew P, Ainley DG, et al. (2018) Global phenological insensitivity to shifting ocean temperatures among seabirds. Nature Climate Change 8:313–318. https://doi.org/10.1038/s41558-018-0115-z
Krijgsveld K, Dijkstra C, Visser HG, Daan S (1998) Energy requirements for growth in relation to sexual size dimorphism in Marsh Harrier Circus aeruginosus nestlings. Physiological Zoology 71:693–702
Lau Alarcón KA (2021) Variación interanual en la tasa de crecimiento de pichones de Pingüino de Humboldt (Spheniscus humboldti, Meyen 1834) en Punta San Juan-Ica periodo 2000-2019. Tesis de Licenciatura. Universidad Ricardo Palma, Lima, Perú
Lindström J (1999) Early development and fitness in birds and mammals. Trends in Ecology and Evolution 14:343–348
Mainwaring MC, Dickens M, Hartley IR (2011) Sexual dimorphism and growth trade-offs in Blue Tit Cyanistes caeruleus nestlings. Ibis 153:175–179. https://doi.org/10.1111/j.1474-919X.2010.01071.x
Mainwaring MC, Hartley IR (2012) Causes and consequences of differential growth in birds: a behavioral perspective. Advances in the Study of Behavior 44:225–277. https://doi.org/10.1016/B978-0-12-394288-3.00006-X
Mainwaring MC, Rowe LV, Kelly DJ, Grey J, Bearhop S, Hartley IR (2009) Hatching asynchrony and growth trade-offs within barn swallow broods. Condor 111:668–674. https://doi.org/10.1525/cond.2009.090064
Malacalza VE, Hall MA (1988) Sexing adult King cormorants (Phalacrocorax albiventer) by discriminant analysis. Colonial Waterbirds 11:32–37. https://doi.org/10.2307/1521167
Malacalza VE, Navas JR (1996) Biología y ecología reproductiva de Phalacrocorax albiventer (Aves: Phalacrocoracidae) en Punta León, Chubut, Argentina. Ornitologia Neotropical 7:53–61
Mangel M, Munch SB (2005) A life-history perspective on short- and long-term consequences of compensatory growth. American Naturalist 166:E155–E176. https://doi.org/10.1086/444439
Metcalfe NB, Monaghan P (2001) Compensation for a bad start: grow now, pay later? Trends in Ecology and Evolution 16:254–260. DOI: 10.1016/S0169-5347(01)02124-3
Metcalfe NB, Monaghan P (2003) Growth versus lifespan: perspectives from evolutionary ecology. Experimental Gerontology 38:935–940. https://doi.org/10.1016/S0531-5565(03)00159-1
Mock DW, Parker GA (1997) The evolution of sibling rivalry. Oxford University Press
Nager RG, Monaghan P, Houston DC, Genovart M (2000) Parental condition, brood sex ratio and differential young survival: an experimental study in gulls (Larus fuscus). Behavioral Ecology and Sociobiology 48:452–457. https://doi.org/10.1007/s002650000262
Nilsson J-Å, Gårdmark A (2001) Sibling competition affects individual growth strategies in marsh tit, Parus palustris, nestlings. Animal Behaviour 61:357–365. https://doi.org/10.1006/anbe.2000.1602
O´Connor RJ (1977) Differential growth and body composition in altricial passerines. Ibis 119:147–166. https://doi.org/10.1111/j.1474-919X.1977.tb03533.x
Oswald SA, Nisbet ICT, Chiaradia A, Arnold JM (2012) FlexParamCurve: R package for flexible fitting of nonlinear parametric curves. Methods in Ecology and Evolution 3:1073–1077. https://doi.org/10.1111/j.2041-210X.2012.00231.x
Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-Plus. Springer science & business media
Punta G, Yorio P, Herrera G, Saravia J (2003) Biología reproductiva de los cormoranes Imperial (Phalacrocorax atriceps) y Cuello Negro (P. magellanicus) en el Golfo San Jorge, Chubut, Argentina. Hornero 18:103–111
Quillfeldt P, Masello JF (2013) Impacts of climate variation and potential effects of climate change on South American seabirds - a review. Marine Biology Research 9:337–357
Quintana F, Schiavini A, Copello S (2005) Estado poblacional, ecología y conservación del Petrel Gigante del Sur (Macronectes giganteus) and Argentina. Hornero 20:25–34
Quintana F, Uhart MM, Gallo L, Mattera MB, Rimondi A, Gómez-Laich A (2022) Heat‑related massive chick mortality in an Imperial Cormorant Leucocarbo atriceps colony from Patagonia, Argentina. Polar Biology 45:275–284. https://doi.org/10.1007/s00300-021-02982-6
Quintana F, Wilson R, Prandoni N, Svagelj WS, Gómez-Laich A (2022) Long-term ecology studies in Patagonian seabirds: a review with the Imperial Cormorant as a case study. En: Helbling W, Narvarte M, González R, Villafañe V (eds) Global change in Atlantic coastal Patagonian ecosystems: A journey through time. Springer, Suiza, pp 233–262
Radl A, Culik BM (1999) Foraging behaviour and reproductive success in Magellanic penguins (Spheniscus magellanicus): a comparative study of two colonies in southern Chile. Marine Biology 133:381–393
Richner H (1991) The growth dynamics of sexually dimorphic birds and Fisher’s sex ratio theory: does sex-specific growth contribute to balanced sex ratios. Functional Ecology 5:19–28. https://doi.org/10.2307/2389552
Ricklefs RE (1967) A graphical method of fitting equations to growth curves. Ecology 48:978–983. https://doi.org/10.2307/1934545
Ricklefs RE (1968a) Patterns of growth in birds. Ibis 110:419–451. https://doi.org/10.1111/j.1474-919X.1968.tb00058.x
Ricklefs RE (1968b) Weight recession in nestling birds. Auk 85:30–35. https://doi.org/10.2307/4083621
Riveros J (1999) Crecimiento y desarrollo postnatal del Pingüino de Humboldt Spheniscus humboldti (Meyen, 1834). Tesis de Licenciatura. Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima, Perú
Roff DA (1992) The evolution of life histories: theory and adaptation. Chapman and Hall
Sauve D, Friesen VL, Charmantier A (2021) The effects of weather on avian growth and implications for adaptation to climate change. Frontiers in Ecology and Evolution 9:569741. https://doi.org/10.3389/fevo.2021.569741
Sawada A, Akatani K, Takagi M (2021) Growth curves of Ryukyu Scops Owl nestlings, an owl species with asynchronous hatching and reversed sexual dimorphism. Ardea 109:229–241. https://doi.org/10.5253/arde.v109i3.a1
Schew WA, Ricklefs RE (1998) Developmental plasticity. Pp. 288-304 en: Starck JM, Ricklefs RE (eds) Avian growth and development: evolution within the altricial-precocial spectrum. Oxford University Press
Schiavini A, Yorio P, Gandini P, Raya Rey A, Boersma PD (2005) Los pingüinos de las costas argentinas: estado poblacional y conservación. Hornero 20:5–23
Schreiber EA, Burger J (2002) Biology of marine birds. CRC Press, Boca Ratón
Scolaro JA, Hall MA, Ximénez IM (1983) The Magellanic Penguin (Spheniscus magellanicus): sexing adults by discriminant analysis of morphometric characters. Auk 100:221–224
Sherman K (1991) The Large Marine Ecosystem concept: research and management strategy for living marine resources. Ecological Applications 1:349–360. https://doi.org/10.2307/1941896
Sherman K, Alexander LM, Gold BD (1990) Large marine ecosystems: patterns, processes and yields. American Association for the Advancement of Science, Washington, D.C., USA
Sofaer HR, Chapman PL, Sillett TS, Ghalambor CK (2013) Advantages of nonlinear mixed models for fitting avian growth curves. Journal of Avian Biology 44:469–478. https://doi.org/10.1111/j.1600-048X.2013.05719.x
Starck JM, Ricklefs RE (1998a) Variation, constraint, and phylogeny: comparative analysis of variation in growth. Pp. 247-265 en: Starck JM, Ricklefs RE (eds) Avian growth and development: evolution within the altricial-precocial spectrum. Oxford University Press
Starck JM, Ricklefs RE (1998b) Avian growth rate data set. Pp. 381-423 en: Starck JM, Ricklefs RE (eds) Avian growth and development: evolution within the altricial-precocial spectrum. Oxford University Press
Stearns SC (1992) The evolution of life histories. Oxford University Press
Stevenson IR, Bryant DM (2000) Avian phenology: climate change and constraints on breeding. Nature 406:366–367
Svagelj WS (2009) Ecología reproductiva de aves marinas dimórficas en relación a las teorías de inversión parental y proporción de sexos en las nidadas. Tesis Doctoral. Universidad de Buenos Aires, Argentina
Svagelj WS (2019) Brood reduction in Neotropical birds: mechanisms, patterns and insights from studies in the Imperial Shag (Phalacrocorax atriceps). Pp. 87–102 en: Reboreda JC, Fiorini VD, Tuero DT (eds) Behavioral Ecology of Neotropical Birds. Springer, Suiza
Svagelj WS, Gómez-Laich A, Pérez MR, Somoza GM, Quintana F (2021) Sex-specific environmental sensitivity on the postnatal growth of a sexually size-dimorphic seabird. Ibis 163:1032–1044. https://doi.org/10.1111/ibi.12920
Svagelj WS, Gómez-Laich A, Quintana F (2019) Richards’s equation and nonlinear mixed models applied to avian growth: why use them? Journal of Avian Biology 50:e01864. https://doi.org/10.1111/jav.01864
Svagelj WS, Quintana F (2007) Sexual size dimorphism and sex determination by morphometric measurements in breeding Imperial Shags (Phalacrocorax atriceps). Waterbirds 30:97–102. https://doi.org/10.1675/1524-4695(2007)030[0097:SSDASD]2.0.CO;2
Svagelj WS, Quintana F (2011a) Breeding performance of the Imperial Shag (Phalacrocorax atriceps) in relation to year, laying date and nest location. Emu 111:162–165. https://doi.org/10.1071/MU10062
Svagelj WS, Quintana F (2011b) Egg-size variation in the Imperial Cormorant: on the importance of individual effects. Condor 113:528–537. https://doi.org/10.1525/cond.2011.100038
Svagelj WS, Quintana F (2017) Sex-specific growth in the Imperial Cormorant (Phalacrocorax atriceps): when does dimorphism arise? Waterbirds 40:154–161. https://doi.org/10.1675/063.040.0207
Teather KL, Weatherhead PJ (1989) Sex-specific mortality in nestling Great-tailed Grackles. Ecology 70:1485–1493. https://doi.org/10.2307/1938207
Tjørve E, Tjørve KMC (2010) A unified approach to the Richards-model family for use in growth analyses: why we need only two model forms. Journal of Theoretical Biology 267:417–425. https://doi.org/10.1016/j.jtbi.2010.09.008
Tjørve KMC, Tjørve E (2017) A proposed family of Unified models for sigmoidal growth. Ecological Modelling 359:117–127. https://doi.org/10.1016/j.ecolmodel.2017.05.008
Torlaschi C, Gandini P, Frere E, Martinez Peck R (2000) Predicting the sex of Kelp gulls by external measurements. Waterbirds 23:518–520. https://doi.org/10.2307/1522193
Torres R, Drummond H (1997) Female-biased mortality in nestlings of a bird with size dimorphism. Journal of Animal Ecology 66:859–865. https://doi.org/10.2307/6001
Trivers RL, Willard DE (1973) Natural selection of parental ability to vary the sex ratio of offspring. Science 179:90–91. DOI: 10.1126/science.179.4068.90
Visser GH (2002) Chick growth and development in seabirds. Pp. 439–465 en: Schreiber EA, Burger J (eds) Biology of marine birds. CRC Press, Florida, USA
Watson H, Bolton M, Monaghan P (2015) Variation in early-life telomere dynamics in a long-lived bird: links to environmental conditions and survival. Journal of Experimental Biology 218:668–674. https://doi.org/10.1242/jeb.104265
Weathers WW (1992) Scaling nestling energy requirements. Ibis 134:142–153. https://doi.org/10.1111/j.1474-919X.1992.tb08391.x
West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press
Wingfield JC, Pérez JH, Krause JS, Word KR, González-Gómez PL, Lisovski S, Chmura HE (2017) How birds cope physiologically and behaviourally with extreme climatic events. Philosophical Transactions of the Royal Society B 372:20160140. https://doi.org/10.1098/rstb.2016.0140
Yorio P, Bertellotti M, García Borboroglu P (2005) Estado poblacional y de conservación de gaviotas que se reproducen en el litoral marítimo argentino. Hornero 20:53–74
Yorio P, García Borboroglu P (2002) Breeding biology of Kelp Gulls (Larus dominicanus) at Golfo San Jorge, Patagonia, Argentina. Emu 102:257–263. https://doi.org/10.1071/MU00077
Zavalaga CB (2015) Proyecto Fragata Karoon, Tumbes 2012-2013. Informe sobre los resultados del estudio biológico de las aves fragatas magníficas en la Isla de los Pájaros, Manglares de Puerto Pizarro. JW Impresiones S.A.C. Lima, Perú
Zavalaga CB, Paredes R (1997a) Sex determination of adult Humboldt penguins using morphometric characters. Journal of Field Ornithology 68:102–112
Zavalaga CB, Paredes R (1997b) Humboldt penguins at Punta San Juan, Perú. Penguin Conservation 10:6–8
Zavalaga CB, Plenge MA, Bertolero A (2008) The breeding biology of the Peruvian Tern (Sternula lorata) in Peru. Waterbirds 31:550–560

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.