Rodenticidas anticoagulantes: una amenaza ignorada para las aves rapaces de Argentina y otros países de Sudamérica
Portada del número actual
PDF

Archivos suplementarios

PDF

Palabras clave

Aves Rapaces
Coagulación
Conservación
Intoxicación
Manejo
Prevención
Rodenticidas Anticoagulantes
Roedores
Vitamina K

Cómo citar

Saggese, Miguel D., Valeria Ojeda, Gala Ortiz, Laura Casalins, Fernando Gonzalez, Carlos Ale, and Rafael Mateo. 2024. “Rodenticidas Anticoagulantes: Una Amenaza Ignorada Para Las Aves Rapaces De Argentina Y Otros países De Sudamérica”. El Hornero 39 (1): 7-33. https://doi.org/10.56178/eh.v39i1.1480.

Resumen

En Argentina, el riesgo que los rodenticidas anticoagulantes podrían presentar para las aves rapaces locales fue reconocido inicialmente en la década de 1980. Lamentablemente, 40 años después de esta primera señal de alarma, los rodenticidas anticoagulantes siguen siendo ampliamente utilizados en el país y en toda Sudamérica, sin haberse estudiado el problema medioambiental que estos pueden suponer. Aquí presentamos una revisión práctica e integral sobre los rodenticidas anticoagulantes y la intoxicación por estos en aves rapaces. Discutimos su impacto, tanto sobre individuos como en sus poblaciones, como también los aspectos relacionados al manejo de animales intoxicados y a la necesidad de contar con capacidad diagnóstica en la región. La información aquí recopilada permitirá contar con contenidos relevantes, actualizados y accesibles necesarios para abordar el estudio de esta amenaza para la conservación de las aves rapaces de Argentina y de otros países de Sudamérica. Al mismo tiempo, esperamos que promueva investigaciones sobre el tema que permitan dar los pasos necesarios para evaluar y mitigar el riesgo que el uso de los rodenticidas anticoagulantes puede tener sobre las aves rapaces y otra fauna silvestre

PDF

Referencias

Alabau E, Mentaberre G, Camarero PR, Castillo-Contreras R, Sánchez-Barbudo IS, Conejero C, Fernández-Bocharán MS, López-Olvera JR, Mateo R (2020) Accumulation of diastereomers of anticoagulant rodenticides in wild boar from suburban areas: Implications for human consumers. Science of the Total Environment 738:139828. https://doi.org/10.1016/j.scitotenv.2020.139828

Alomar H, Chabert A, Coeurdassier M, Vey D, Berny P (2018) Accumulation of anticoagulant rodenticides (chlorophacinone, bromadiolone and brodifacoum) in a non-target invertebrate, the Slug, Deroceras reticulatum. Science of the Total Environment 610-611:576–582. https://doi.org/10.1016/j.scitotenv.2017.08.117

ANMAT (2024a) https://www.argentina.gob.ar/anmat/regulados/productos-de-uso-domestico/productos-desinfestantes-plaguicidas-insecticidas-0

ANMAT (2024b) https://www.argentina.gob.ar/anmat/regulados/productos-de-uso-domestico/productos-desinfestantes-plaguicidas-insecticidas

Anónimo (2002) Manual de atención primaria de intoxicaciones, Tomo II, parte especial. https://www.argentina.gob.ar/sites/default/files/manual_toxi.pdf

Anónimo (2023a) Anticoagulant rodenticides market size, share and trends analysis report by product type (1st Generation, 2nd Generation), by form (pellets, blocks, powders), by application, by region, and segment forecasts, 2022 – 2030. https://www.grandviewresearch.com/industry-analysis/anticoagulant-rodenticides-market-report#

Anónimo (2023b) https://www.grefa.org/proyectosgrefa/control-biol%C3%B3gico-del-topillo-campesino.html#el-topillo

APN-PNLP (2023). Protocolos para evitar contagios de Hantavirus en el Parque Nacional Lago Puelo. Departamento de Conservación y Educación. Ambiental-Parque Nacional Lago Puelo, Administración de Parques Nacionales, Buenos Aires, Argentina DI-2023-7-APN-PNLP#APNAC

Badry A, Schenke D, Treu G, Krone O (2021) Linking landscape composition and biological factors with exposure levels of rodenticides and agrochemicals in avian apex predators from Germany. Environmental Research 193:110602. https://doi.org/10.1016/j.envres.2020.110602

Baker S, Ayers M, Beausoleil N, Belmain SR, Berdoy M, Buckle AP, Cagienard C, Cowan D, Fearn-Daglish J, Goddard P, Golledge H, Mullineaux E, Sharp T, Simmons A, Schmolz E (2022) An assessment of animal welfare impacts in wild Norway rat (Rattus norvegicus) management. Animal Welfare 31:51-68. https://doi.org/10.7120/09627286.31.1.005

Baldwin R, Quinn N, Davis D, Engeman R (2014) Effectiveness of rodenticides for managing invasive roof rats and native deer mice in orchards. Environmental Science and Pollution Research 21:5795–5802. https://doi.org/10.1007/s11356-014-2525-4

Bellocq MI, Kravetz FO (1993) Productividad de la Lechuza de Campanario (Tyto alba) en nidos artificiales en agroecosistemas pampeanos. El Hornero 13:277–282. https://doi.org/10.56178/eh.v13i4.1046

Berny PJ, Buronfosse T, Buronfosse F, Lamarque F, Lorgue G (1997) Field evidence of secondary poisoning of foxes (Vulpes vulpes) and buzzards (Buteo buteo) by bromadiolone, a 4-year survey. Chemosphere 35:1817–1829. https://doi.org/10.1016/S0045-6535(97)00242-7

Bierregaard RO Jr (1998) Conservation status of birds of prey in the South American tropics. Journal of Raptor Research 32:19–27

Bildstein KL (2017) Raptors: the curious nature of diurnal birds of prey. Cornell University Press, Ithaca, New York, EE. UU

Bildstein KL (2021) Vultures of the world: essential ecology and conservation. Cornell University Press, Ithaca, New York, EE.UU

Boal CW, Dykstra CR (2018) Urban Raptors: Ecology and conservation of birds of prey in cities. Island Press, Washington, DC, USA.

Booth L, Fisher P, Hepplewhite V, Eason C (2003) Toxicity and residues of brodifacoum in snails and earthworms. DOC Science Internal Series. 143

Borrell B (2011) Where eagles die. Nature. https://doi.org/10.1038/news.2011.24

Borst GHA, Counotte GHM (2002) Shortfalls using second-generation anticoagulant rodenticides. Journal of Zoo and Wildlife Medicine 33:85. https://doi.org/10.1638/1042-7260(2002)033[0085:SUSGAR]2.0.CO;2

Bouker G, Tyree A, San Martín A, Salom A, Dodino S, Balza U (2021) Garbage dump use, mortality, and microplastic exposure of raptors in Ushuaia, Tierra Del Fuego province, Southern Argentina. Journal of Raptor Research 55:220–229. https://doi.org/10.3356/0892-1016-55.2.220

Boyle CM (1960) Case of apparent resistance of Rattus norvegicus to anticoagulant poisons. Nature 188:157. https://doi.org/10.1038/188517a0

Brakes CR, Smith RH (2005) Exposure of non-target small mammals to rodenticides: short-term effects, recovery and implications for secondary poisoning. Journal of Applied Ecology 42:118–128. https://doi.org/10.1111/j.1365-2664.2005.00997.x

Buckle AP, Prescott CV, Ward KJ (1994) Resistance to the first- and second-generation anticoagulant rodenticides – a new perspective. Pp. 138–144 en: Halverson WS, Marsh RE (eds) Proceedings of the sixteenth vertebrate pest conference

Buckle A (2013) Anticoagulant resistance in the United Kingdom and a new guideline for the management of resistant infestations of Norway rats (Rattus norvegicus Berk.). Pest Management Science 69:334-341. https://doi.org/10.1002/ps.3309

Buechley ER, Santangeli A, Girardello M, Neate-Clegg MHC, Oleyar D, McClure CJW, Şekercioğlu ÇH (2019) Global raptor research and conservation priorities: tropical raptors fall prey to knowledge gaps. Diversity and Distribution 25:856–869.

https://doi.org/10.1111/ddi.12901

Carrera A, Navas I, María-Mojica P, García-Fernández AJ (2024). Greater predisposition to second generation anticoagulant rodenticide exposure in red foxes (Vulpes vulpes) weakened by suspected infectious disease. Science of the Total Environment 907:167780. https://doi.org/10.1016/j.scitotenv.2023.167780

Charrel RN, de Lamballerie X (2009) Zoonotic aspects of arenavirus infections. Veterinary Microbiology 140:213–220. https://doi.org/10.1016/j.vetmic.2009.08.027

Chitty J, Lierz M (2008) BSAVA Manual of raptors, pigeons and passerine birds. 1st Edition.

Christensen TK, Lassen P, Elmeros M (2012) High exposure rates of anticoagulant rodenticides in predatory bird species in intensively managed landscapes in Denmark. Archives of Environmental Contamination and Toxicology 63:437–444. https://doi.org/10.1007/s00244-012-9771-6

Chua C, Humaidi M, Neves ES, Mailepessov D, Ng LC, Aik J (2022) VKORC1 mutations in rodent populations of a tropical city-state as an indicator of anticoagulant rodenticide resistance. Scientific Reports 16:12:4553. https://doi.org/10.1038/s41598-022-08653-8

Cooke R, Whiteley P, Death C, Weston MA, Carter N, Scammell K, Yokochi K, Nguyen H, White JG (2023) Silent killers? The widespread exposure of predatory nocturnal birds to anticoagulant rodenticides. Science of the Total Environment 904:166293. https://doi.org/10.1016/j.scitotenv.2023.166293

Cooper JE (2001) Birds of prey: health and diseases. Blackwell Publishing, New York, EE.UU.

Cowan PE, Gleeson DM, Howitt RLJ, Ramón-Laca A, Esther A, Pelz HJ (2016) Vkorc1sequencing suggests anticoagulant resistance in rats in New Zealand. Pest Management Science 73:262-266. https://doi.org/10.1002/ps.4304

Cox P, Smith RH (1992) Rodenticide ecotoxicology: pre-lethal effects of anticoagulants on rat behaviour. Pp 165–170 en: Borrecco JE, Marsh RE (eds) Proceedings of the 15th vertebrate pest conference. University of California, Davis, California, USA.

Cuthbert RJ, Taggart MA, Saini M, Sharma A, Das A, Kulkarni MD, Deori P, Ranade S, Shringarpure RN, Galligan TH, Green RE (2016) Continuing mortality of vultures in India associated with illegal veterinary use of diclofenac and a potential threat from nimesulide. Oryx 50:104–112. https://doi.org/10.1017/S003060531500037X

Damín-Pernik M, Espana B, Besse S, Fourel I, Caruel H, Popowycz F, Benoit E, Lattard V (2016) Development of an ecofriendly anticoagulant rodenticide based on the stereochemistry of difenacoum. Drug Metabolism and Disposition 44:1872–1880. https://doi.org/10.1124/dmd.116.071688

Damín-Pernik M, Espana B, Lefebvre S, Fourel I, Caruel H, Benoit E, Lattard V (2017) Management of rodent populations by anticoagulant rodenticides: toward third-generation anticoagulant rodenticides. Drug Metabolism and Disposition 45:160–165. https://doi.org/10.1124/dmd.116.073791

Declementi C, Sobczak BR (2012) Common rodenticide toxicoses in small animals. Veterinary Clinics of North America-Small Animal Practice 42:349–360. https://doi.org/10.1016/j.cvsm.2011.12.008

Dickson AJ, Belthoff JR, Mitchell KA, Smith BW, Wallace ZP, Stuber MJ, Lockhart MJ, Rattner BA, Katzner TE (2020) Evaluating a rapid field assessment system for anticoagulant rodenticide exposure of raptors. Archives of Environmental Contamination and Toxicology 79:454-460. https://doi.org/10.1007/s00244-020-00763-6

Donázar JA, Cortés-Avizanda A, Fargallo JA, Margalida A, Moleón M, Morales-Reyes Z, Moreno-Opo R, Pérez-García JM, Sánchez-Zapata JA, Zuberogoitia I, Serrano D (2016) Role of raptors in a changing world: From flagships to providers of key ecosystem services. Ardeola 63:181–234. https://doi.org/10.13157/arla.63.1.2016.rp8

Doolittle RF, Feng DF (1987) Reconstructing the evolution of vertebrate blood coagulation from a consideration of the amino acid sequences of clotting proteins. Cold Spring Harb Symposia on Quantitative Biology 52:869–874. doi:10.1101/SQB.1987.052.01.095

Dowding CV, Shore RF, Worgan A, Baker PJ, Harris S (2010) Accumulation of anticoagulant rodenticides in a non-target insectivore, the European hedgehog (Erinaceus europaeus). Environmental Pollution 158:161–166. https://doi.org/10.1016/j.envpol.2009.07.017

Eason CT, Murphy EC, Wright GRG, Spurr EB (2002) Assessment of risks of brodifacoum to non-target birds and mammals in New Zealand. Ecotoxicology 11:35–48. https://doi.org/10.1023/A:1013793029831

Eleni C, Neri B, Giannetti L, Grifoni G, Meoli R, Stravino F, Friedrich KG, Scholl F, Di Cerbo P, Battisti A (2019) Death of captive-bred vultures caused by flunixin poisoning in Italy. Environmental Toxicology and Pharmacology 68:91–93. https://doi.org/10.1016/j.etap.2019.03.011

Elliott JE, Hindmarch S, Albert CA, Emery J, Mineau P, Maisonneuve F (2014) Exposure pathways of anticoagulant rodenticides to nontarget wildlife. Environmental Monitoring and Assessment 186:895–906. https://doi.org/10.1007/s10661-013-3422-x

Elliott JE, Silverthorn V, English SG, Mineau P, Hindmarch S, Thomas PJ, Lee S, Bowes V, Redford T, Maisonneuve F, Okoniewski J (2024) Anticoagulant rodenticide toxicity in terrestrial raptors: tools to estimate the impact on populations in North America and globally. Environmental Toxicology and Chemistry 43:988-998. https://doi.org/10.1002/etc.5829

Elliott JE, Silverthorn V, Hindmarch S, Lee S, Bowes V, Redford T, Maissoneuve F (2022) Anticoagulant rodenticide contamination of terrestrial birds of prey from Western Canada: patterns and trends, 1988–2018. Environmental Toxicology and Chemistry 41:1903–1917.

https://doi.org/10.1002/etc.5361

Elmeros M, Bossi R, Christensen TK, Kjær LJ, Lassenp, Topping CJ (2019) Exposure of non-target small mammals to anticoagulant rodenticide during chemical rodent control operations. Environmental Science and Pollution Research 26:6133–6140. https://doi.org/10.1007/s11356-018-04064-3

Erickson W, Urban D (2004) Potential Risks of Nine Rodenticides to Birds and Nontarget Mammals: a Comparative Approach; US Environmental Protection Agency, Office of Prevention, Pesticides, and Toxic Substances, Office of Pesticide Programs, U.S. Govenrment Printing Office: Washington, DC, EE.UU

Evans J, Ward AL (1967) Secondary poisoning associated with anticoagulant-killed nutria. Journal of the American Veterinary Medical Association 151:856–861

Fair J, Paul E, Jones J (2010). Guidelines to the use of wild birds in research. Washington, D.C.: Ornithological Council

Feinstein DL, Akpa BS, Ayee MA, Boullerne AI, Braun D, Brodsky SV, Gidalevitz D, Hauck Z, Kalinin S, Kowal K, Kuzmenko I, Lis K, Marangoni N, Martynowycz MW, Rubinstein I, Van Breemen R, Ware K, Weinberg G (2016) The emerging threat of superwarfarins: history, detection, mechanisms, and countermeasures. Annals of the New York Academy of Sciences 1374:111-122. https://doi.org/10.1111/nyas.13085

Ferguson-Lees J, Christie DA (2001) Raptors of the world. Houghton Mifflin Harcourt, New York, NY, EE. UU

Figueiredo LT, Souza WM, Ferrés M, Enria DA (2014) Hantaviruses and cardiopulmonary syndrome in South America. Virus Research 187:43–54. https://doi.org/10.1016/j.virusres.2014.01.015

Fourel I, Damin-Pernik M, Benoit E, Lattard V (2017) Cis-bromadiolone diastereoisomer is not involved in bromadiolone Red Kite (Milvus milvus) poisoning. Science of the Total Environment 601–602:1412-1417. https://doi.org/10.1016/j.scitotenv.2017.06.011

Fraser D, Mouton A, Serieys LEK, Cole S, Carver S, Vandewoude S, Lappin M, Riley SPD, Wayne R (2018) Genome-wide expression reveals multiple systemic effects associated with detection of anticoagulant poisons in Bobcats (Lynx rufus). Molecular Ecology 27:1170–1187. https://doi.org/10.1111/mec.14531

Garvin JC, Slabe VA, Cuadros Díaz SF (2020) Conservation Letter: Lead poisoning of raptors. Journal of Raptor Research 54:473–479. https://doi.org/10.3356/0892-1016-54.4.473

Gierus L, Birand A, Bunting MD, Godahewa GI, Piltz SG, Oh KP, Piaggio AJ, Threadgill DW, Godwin J, Edwards O, Cassey P, Ross JV, Prowse TA, Thomas PQ (2022) Leveraging a natural murine meiotic drive to suppress invasive populations. Proceedings of the National Academy of Sciences of the United States of America 119:e2213308119. https://doi.org/10.1073/pnas.2213308119

Goldstein MI, Lacher TE, Woodbridge B, Bechard MJ, Canavelli SB, Zaccagnini ME, Cobb GP, Scollon EJ, Tribolet R, Hopper MJ (1999) Monocrotophos-induced mass mortality of Swainson's Hawks in Argentina, 1995–96. Ecotoxicology 8:201–214. https://doi.org/10.1023/A:1026496331396

Gombobaatar S, Sumiya D, Shagdarsuren O, Potapov ER, Fox N (2004) Saker falcon (Falco cherrug milvipes Jerdon) mortality in central Mongolia and population threats. Mongolian Journal of Biological Sciences 2:13–21

Gómez-Adaros J, Cultrera-Rozowski A, Sallaberry-Pincheira N (2022) Blood transfusion from a Magellanic Great Horned Owl (Bubo virginianus magellanicus) to a Barn Owl (Tyto alba): A successful case of xenotransfusion. Journal of Avian Medicine and Surgery 36:302-307. https://doi.org/10.1647/21-00055

Gómez EA, Hindmarch S, Smith JA (2022) Conservation letter: raptors and anticoagulant rodenticides. Journal of Raptor Research 56:147–153. https://doi.org/10.3356/JRR-20-122

Gómez EA, Prestridge HL, Smith JA (2023) Anthropogenic threats to owls: Insights from rehabilitation admittance data and rodenticide screening in Texas. PLoS One 18:e0289228. https://doi.org/10.1371/journal.pone.0289228

González F, Villén-Molina E, López I, Moraleda V, Suárez L, Waxman S, Rodríguez-Fernández C (2023) Residuos medicamentosos de diclofenaco y su impacto en los buitres del género Gyps. Actualidad en Farmacología y Terapéutica 21:106–120

Goulois J, Lambert V, Legros L, Benoit E, Lattard V (2017) Adaptative evolution of the Vkorc1 gene in Mus musculus domesticus is influenced by the selective pressure of anticoagulant rodenticides. Ecology and Evolution 7:2767–2776. https://doi.org/10.1002/ece3.2829

Greaves JH (2015) Resistance to anticoagulant rodenticides. Pp 187–208 en: Buckle AP, Smith R (eds) Rodent Pests and Their Control. 2da Edicion, CAB Internacional

Gupta RC (2018) Non-anticoagulant rodenticides. Pp 613–626 en: Gupta RC (ed) Veterinary Toxicology. 3ra Edicion. Academic Press, Elsevier, New York, EE. UU.

Herrero-Villar M, Delepoulle É, Suárez-Regalado L, Solano-Manrique C, Juan-Sallés C, Iglesias-Lebrija J, Camarero P, González, F, Álvarez E, Mateo R (2021) First diclofenac intoxication in a wild avian scavenger in Europe. Science of the Total Environment 782:146890. https://doi.org/146890. 10.1016/j.scitotenv.2021.146890

Herring G, Eagles-Smith CA, Buck JA (2023) Anticoagulant rodenticides are associated with increased stress and reduced body condition of avian scavengers in the Pacific Northwest, Environmental Pollution 331:121899. https://doi.org/10.1016/j.envpol.2023.121899

Herring G, Eagles-Smith CA, Wolstenholme R, Welch A, West C, Rattner BA (2022) Collateral damage: Anticoagulant rodenticides pose threats to California Condors. Environmental Pollution 311:119925. https://doi.org/10.1016/j.envpol.2022

Hickey JJ, Anderson DW (1968) Chlorinated hydrocarbons and eggshell changes in raptorial and fish-eating birds. Science 162: 271–273. https://doi.org/10.1126/science.162.3850.271

Hindmarch S, Elliott JE (2018) Ecological factors driving uptake of anticoagulant rodenticides in predators. Pp. 229–258 en: van den Brink N, Elliott J, Shore R, Rattner B (eds) Anticoagulant Rodenticides and Wildlife. Springer International Publishing, Cham, Switzerland

Hindmarch S, Rattner BA, Elliott JE (2019) Use of blood clotting assays to assess potential anticoagulant rodenticide exposure and effects in free-ranging birds of prey. Science of the Total Environment 657:1205-1216. https://doi.org/10.1016/j.scitotenv.2018.11.485

Hong SY, Lin HS, Walther BA, Shie JE, Sun YH (2018) Recent avian poisonings suggest a secondary poisoning crisis of Black Kites during the 1980s in Taiwan. Journal of Raptor Research 52:326–337. https://doi.org/10.3356/JRR-17-40.1

Hong SY, Morrissey C, Lin HY, Lin KS, Lin WL, Yao CT, Lin TE, Chan FT, Sun YH (2019) Frequent detection of anticoagulant rodenticides in raptors sampled in Taiwan reflects government rodent control policy, Science of The Total Environment 691:1051–1058. https://doi.org/10.1016/j.scitotenv.2019.07.076

Hopf-Dennis C, Kaye S, Hollingshead N, Brooks M, Bunting E, Abou-Madi N (2022) Prevalence of anticoagulant rodenticide exposure in red-tailed hawks (Buteo jamaicensis) and utility of clotting time assays to detect coagulopathy. Ecotoxicology 31:919–932. https://doi.org/10.1007/s10646-022-02558-y

Howald GR, Mineau P, Elliott JE, Cheng KM (1999) Brodifacoum poisoning of avian scavengers during rat control on a seabird colony. Ecotoxicology 8:431–447. https://doi.org/10.1023/A:1008951701780

Huckabee JR (2000) Raptor therapeutics. Veterinary Clinics of North America. Exotic Animal Practice 3:91–116. https://doi.org/10.1016/S1094-9194(17)30096-8

Isackson B, Irizarry L (2022) Rodenticide Toxicity. En: StatPearls. Treasure (FL): StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK554428/

Jackson WB, Ashton AD (1992) A review of available anticoagulants and their use in the United States. Pp. 88 en: Proceedings of the Fifteenth Vertebrate Pest Conference - Vertebrate Pest Conference Proceedings collection, University of Nebraska, Lincoln, Nebraska, EE. UU

Jacob J, Buckle A (2018) Use of anticoagulant rodenticides in different applications around the world. Pp. 11–43 en: van den Brink N, Elliott J, Shore R, Rattner B (eds) Anticoagulant Rodenticides and Wildlife. Springer International Publishing, Cham, Switzerland

Jácome N, Abarzua G, Astore V, Pacheco R (2022). Mass poisonings of the vulnerable Andean Condor prompt national strategy against the use of toxic baits in Argentina. Ethnobiology and Conservation 11:14. https://doi.org/10.15451/ec2022-07-11.14-1-17

Jareño D, Paz Luna A, Viñuela J (2023) Local effects of nest-boxes for avian predators over common vole abundance during a mid-density outbreak. Life 13:1963. https://doi.org/10.3390/life13101963

Johnston JJ, Pitt WC, Sugihara RT, Eisemann JD, Primus TM, Holmes MJ, Crocker J, Hart A (2005) Probabilistic risk assessment for snails, slugs, and endangered honeycreepers in diphacinone rodenticide baited areas on Hawaii, U.S.A. Environmental Toxicology and Chemistry 24:1557–1567. https://doi.org/10.1897/04-255R.1

Joseph V (2006) Raptor medicine: an approach to wild, falconry, and educational birds of prey. Veterinary Clinics of North America. Exotic Animal Practice 9:321–345. https://doi.org/10.1016/j.cvex.2006.03.007

Justice-Allen A, Loyd KA (2017) Mortality of Western Burrowing Owls (Athene cunicularia hypugaea) associated with brodifacoum exposure. Journal of Wildlife Diseases 53:165–169. https://doi.org/10.7589/2015-12-321

Kelly TR, Poppenga RH, Woods LA, Hernandez YZ, Boyce WM, Samaniego FJ, Torres SG, Johnson CK (2014) Causes of mortality and unintentional poisoning in predatory and scavenging birds in California. Veterinary Records Open 1:e000028. https://doi.org/10.1136/vropen-2014-000028

Knopper LD, Mineau P, Walker LA, Shore RF (2007) Bone density and breaking strength in UK raptors exposed to second generation anticoagulant rodenticides. Bulletin of Environmental Contamination and Toxicology 78:249–251. https://doi.org/10.1007/s00128-007-9122-x

Lambert O, Pouliquen H, Larhantec M, Thorin C, L’Hostis M (2007) Exposure of raptors and waterbirds to anticoagulant rodenticides (difenacoum, bromadiolone, coumatetralyl, coumafen, brodifacoum): epidemiological survey in Loire Atlantique (France). Bulletin of Environmental Contamination and Toxicology. 79:91–94. https://doi.org/10.1007/s00128-007-9134-6

Langford KH, Reid M, Thomas KV (2013) The occurrence of second-generation anticoagulant rodenticides in non-target raptor species in Norway. Science of the Total Environment 450–451:205–208. https://doi.org/10.1016/j.scitotenv.2013.01.100

Lattard V, Benoitt E (2019) The stereoisomerism of second-generation anticoagulant rodenticides: a way to improve this class of molecules to meet the requirements of society? Pest Management Science 75:887–892. https://doi.org/10.1002/ps.5155

Lefebvre S, Fourel I, Chatron N, Caruel H, Benoit E, Lattard V (2020) Comparative biological properties of the four stereoisomers of difethialone, a second-generation anticoagulant rodenticide, in rats: development of a model allowing to choose the appropriate stereoisomeric ratio. Archives of Toxicology 94:795–801. https://doi.org/10.1007/s00204-020-02662-0

Lettoof DC, Lohr MT, Busetti F, Bateman PW, Davis RA (2020) Toxic time bombs: Frequent detection of anticoagulant rodenticides in urban reptiles at multiple trophic levels. Science of the Total Environment 724:138218. https://doi.org/10.1016/j.scitotenv.2020.138218

Liébana MS, Sarasola JH (2013) Nest-box occupancy by neotropical raptors in a native forest of central Argentina. Journal of Raptor Research 47:208–213. https://doi.org/10.3356/JRR-12-51.1

Link KP (1959) The discovery of dicoumarol and its sequels. Circulation 9:97–107. https://doi.org/10.1161/01.CIR.19.1.97

Lipton RA, Klass E M (1984) Human ingestion of a 'superwarfarin' rodenticide resulting in a prolonged anticoagulant effect. Journal of the American Medical Association 252:3004–3005. https://doi.org/10.1001/jama.1984.03350210052030

Lohr MT (2018) Anticoagulant rodenticide exposure in an Australian predatory bird increases with proximity to developed habitat. Science of the Total Environment 643:134–144. https://doi.org/10.1016/j.scitotenv.2018.06.207

López-Perea JJ, Mateo R (2018) Secondary exposure to anticoagulant rodenticides and effects on predators. Pp. 159–193 en: van den Brink N, Elliott J, Shore R, Rattner B (eds) Anticoagulant Rodenticides and Wildlife. Springer International Publishing, Cham, Switzerland

López-Perea JJ, Camarero PR, Molina-López RA, Parpal L, Obón E, Solá J, Mateo R (2015) Interspecific and geographical differences in anticoagulant rodenticide residues of predatory wildlife from the Mediterranean region of Spain. Science of the Total Environment 511:259-267. https://doi.org/10.1016/j.scitotenv.2014.12.042

Lovett RA (2012) Killing rats is killing birds. Nature. https://doi.org/10.1038/nature.2012.11824

Lugo M (2019) Intoxicación con rodenticidas anticoagulantes: serie de casos y revisión de literatura. Acta Toxicológica Argentina 27:60–64

MAD (2021a). Categorización de los Mamíferos de Argentina según su riesgo de extinción. Ministerio de Ambiente y Desarrollo Sustentable (MAD). Resolución 316/2021

MAD (2021b). Informe del estado del ambiente 2020. Ciudad Autónoma de Buenos Aires: Ministerio de Ambiente y Desarrollo Sostenible de la Nación. https://www.argentina.gob.ar/sites/default/files/iea_2020_digital.pdf

Madden KK, Rozhon GC, Dwyer J (2019) Conservation Letters: raptor persecution. Journal of Raptor Research 53:230–233. https://doi.org/10.3356/JRR-18-37

MAPA (2024). Registro de Productos Fitosanitarios. Ministerio de Agricultura, Pesca y Alimentación. Madrid. España. https://www.mapa.gob.es/es/agricultura/temas/sanidad-vegetal/productos-fitosanitarios/registro-productos/

Martínez-Padilla J, López-Idiáquez D, López-Perea JJ, Mateo R, Paz A, Viñuela J (2017) A negative association between bromadiolone exposure and nestling body condition in common kestrels: management implications for vole outbreaks. Pest Management Science 73:364-370. https://doi.org/10.1002/ps.4435

Martínez-Ruiz M, Dykstra CR, Booms TL, Henderson MT (2023) Conservation Letters: Effects of global climate change on raptors. Journal of Raptor Research 57:92-105. https://doi.org/10.3356/JRR-22-75

Martinho F (2009) Indications and technique for blood transfusion in birds. Journal of Exotic Pet Medicine 18:112–116. https://doi.org/10.1053/j.jepm.2009.04.001

Marzal A (2012) Recent advances in studies on avian malaria parasites. Pp. 135–158 en: Omolade O (ed) Malaria Parasites. Hauppauge: Nova Publisher

Massei G, Jacob J, Hinds LA (2023) Developing fertility control for rodents: a framework for researchers and practitioners. Integrative Zoology 19:87-107. https://doi.org/10.1111/1749-4877.12727

Massoia E (1983) La alimentación de algunas aves del orden Estrigiformes en la Argentina. El Hornero Número Extraordinario:125–148

Masuda BM, Fisher P, Beaven B (2015) Residue profiles of brodifacoum in coastal marine species following an island rodent eradication. Ecotoxicology and Environmental Safety 113:1-8. https://doi.org/10.1016/j.ecoenv.2014.11.013

McClure CJW, Buij R, Thorstrom R, Vargas F, Virani M (2023) The world's most imperiled raptors present substantial conservation challenges. Journal of Raptor Research 57:375–384. https://doi.org/10.3356/JRR-22-79

McClure CJW, Lepage D, Dunn L, Anderson DL, Schulwitz SE, Camacho L, Robinson BW, Christidis L, Schulenberg TS, Iliff MJ, Rasmussen PC, Johnson J (2020) Towards reconciliation of the four world bird lists: hotspots of disagreement in taxonomy of raptors. Proceedings Biological Sciences 287(1929):20200683. https://doi.org/10.1098/rspb.2020.0683

McClure CJW, Westrip JRS, Johnson JA, Schulwitz SE, Virani MZ, Davies R, Symes A, Weathley H, Thorstrom R, Amar A, Buij R, Jones VR, Williams NE, Buechley ER, Butchart SHM (2018) State of the world’s raptors: distributions, threats, and conservation recommendations. Biological Conservation 227:390–402. https://doi.org/10.1016/j.biocon.2018.08.012

Mendenhall VM, Pank LF (1980) Secondary poisoning of owls by anticoagulant rodenticides. Wildlife Society Bulletin 8:311–315

Mercer MA, Davis JL, Riviere JE, Baynes RE, Tell LA, Jaberi-Douraki M, Maunsell FP, Lin Z (2022) Mechanisms of toxicity and residue considerations of rodenticide exposure in food Animals-a FARAD perspective. Journal of the American Veterinary Medical Association 260:514–523. https://doi.org/10.2460/javma.21.08.0364

Middleberg RA, Homan J (2012) Qualitative identification of rodenticide anticoagulants by LC-MS/MS. Methods in Molecular Biology 902:139–148. https://doi.org/10.1007/978-1-61779-934-1_12

Mikkola H (2013) Owls of the World: A photographic guide. Firefly Books, Ontario, Canadá

Muñoz-Pedreros A, Gil C, Yañez J, Rau J (2010). Raptor habitat management and its implication on the biological control of the Hantavirus. European Journal of Wildlife Research 56:703–715. https://doi.org/10.1007/s10344-010-0364-2

Murphy MJ (2012) Rodenticide toxicosis. Pp. 133-135 en: Bonagura JD (ed) Kirk's current veterinary therapy XV. WB Saunders Co., Philadelphia

Murphy MJ (2018) Anticoagulant rodenticides. Pp. 583-612 en: Gupta RC (ed) Veterinary Toxicology: Basic and clinical principles. Academic Press, Elsevier, New York, NY, USA

Murray M (2011) Anticoagulant rodenticide exposure and toxicosis in four species of birds of prey presented to a wildlife clinic in Massachusetts, 2006–2010. Journal of Zoo and Wildlife Medicine 42:88–97. https://doi.org/10.1638/2010-0188.1

Murray M (2017) Anticoagulant rodenticide exposure and toxicosis in four species of birds of prey in Massachusetts, USA, 2012–2016, in relation to use of rodenticides by pest management professionals. Ecotoxicology 26:1041–1050. https://doi.org/10.1007/s10646-017-1832-1

Murray M (2018) Ante-mortem and post-mortem signs of anticoagulant rodenticide toxicosis in birds of prey. Pp. 109-134 en: van den Brink N, Elliott J, Shore R, Rattner B (eds) Anticoagulant Rodenticides and Wildlife. Springer International Publishing, Cham, Switzerland

Murray M (2020) Continued anticoagulant rodenticide exposure of Red-tailed Hawks (Buteo jamaicensis) in the northeastern United States with an evaluation of serum for biomonitoring. Environmental Toxicology and Chemistry 39:2325–2335. https://doi.org/10.1002/etc.4853

Murray M, Cox EC (2023) Active metabolite of the neurotoxic rodenticide bromethalin along with anticoagulant rodenticides detected in birds of prey in the northeastern United States. Environmental Pollution 333:122076. https://doi.org/10.1016/j.envpol.2023.122076

Murray M, Tseng F (2008) Diagnosis and treatment of secondary anticoagulant rodenticide toxicosis in a red-tailed hawk (Buteo jamaicensis). Journal of Avian Medicine and Surgery 22:41–46. https://doi.org/10.1647/2007-012R.1

Naidoo V, Wolter K, Cromarty D, Diekmann M, Duncan N, Meharg AA, Taggart MA, Venter L, Cuthbert R (2010) Toxicity of non-steroidal anti-inflammatory drugs to Gyps vultures: a new threat from ketoprofen. Biology Letters 23:339–341. https://doi.org/10.1098/rsbl.2009.0818

Nakayama SMM, Morita A, Ikenaka Y, Mizukawa H, Ishizuka M (2019) A review: poisoning by anticoagulant rodenticides in non-target animals globally. Journal of Veterinary Medical Science 81:298–313. https://doi.org/10.1292/jvms.17-0717

Nevill H (2009) Diagnosis of nontraumatic blood loss in birds and reptiles. Journal of Exotic Pet Medicine 18:140–145. https://doi.org/10.1053/j.jepm.2009.04.011

Newton I (1979) Population ecology of raptors. Buteo Books, Vermillion, South Dakota

Newton I (1998) Population limitation in birds. Elsevier, London, United Kingdom

Newton I, Wyllie I, Freestone P (1990) Rodenticides in British Barn Owls. Environmental Pollution 68:101–117. https://doi.org/10.1016/0269-7491(90)90015-5

Newton I, Shore RF, Wyllie I, Birks JDS, Dale L (1999). Empirical evidence of side-effects of rodenticides on some predatory birds and mammals. Pp. 347-367 en: Cowan DP, Feare C (eds) Advances in vertebrate pest management. Filander Verlag, Fürth, Germany

Nguyen N, Saggese MD, EnG E (2018) Analysis of historical medical records of California Condors (Gymnogyps californianus) admitted for lead exposure to the Los Angeles Zoo and Botanical Gardens between 1997 and 2012: a case series study. Journal of Zoo and Wildlife Medicine 49:902–911. https://doi.org/10.1638/2018-0022.1

Nielsen M, Langley MC, Shipton C, Kapitány R (2020) Homo neanderthalensis and the evolutionary origins of ritual in Homo sapiens. Philosophical Transactions of the Royal Society of London B, Biological Sciences 375(1805):20190424. https://doi.org/10.1098/rstb.2019.0424

Novgorod N, Цehtp K, Hobropoд H (2010) The Imperial Eagle is a vanishing species in the Tyva Republic, Russia. Raptors Conservation 20:177–185. https://doi.org/10.1292/jvms.17-0717

O’Bryan CJ, Allan JR, Suarez-Castro AF, Delsen DM, Buij R, McClure CJW, Rehbein JA, Virani M, McCabe JdD Tyrrell P, Negret PJ, Greig C, Brehony P, Kissling WD (2022) Human impacts on the world’s raptors. Frontiers in Ecology and Evolution 10:e624896. https://doi.org/10.3389/fevo.2022.624896

Oaks JL, Gilbert M, Virani MZ, Watson RT, Meteyer CU, Rideout B, Shivaprasad HL, Amed S, Iqbal-Chaudhry MJ, Arshad M, Mahmood S, Ali AY, Khan AA (2004) Diclofenac residues as the cause of vulture population declines in Pakistan. Nature 427:630–633. https://doi.org/10.1038/nature02317

Oliva-Vidal P, Martínez JM, Sánchez-Barbudo IS, Camarero PR, Colomer MA, Margalida A, Mateo R (2022) Second-generation anticoagulant rodenticides in the blood of obligate and facultative European avian scavengers. Environmental Pollution 315:120385. https://doi.org/10.1016/j.envpol.2022.120385.

Padayachee K, Reynolds C, Mateo R, Amar A (2023) A global review of the temporal and spatial patterns of ddt and dieldrin monitoring in raptors. Science of the Total Environment 858:159734. https://doi.org/10.1016/j.scitotenv.2022.159734

Panopio JK, Pajaro M, Grande JM, Dela Torre M, Raquino M, Watts P (2021) Conservation Letter: Deforestation—The Philippine Eagle as a case study in developing local management partnerships with indigenous peoples. Journal of Raptor Research 55:460–467. https://doi.org/10.3356/JRR-20-118

Pay J M, Katzner TE, Hawkins CE, Barmuta LA, Brown WE, Wiersma JM, Koch AJ, Mooney NJ, Cameron EZ (2021) Endangered Australian top predator is frequently exposed to anticoagulant rodenticides. Science of the Total Environment 788:147673. https://doi.org/10.1016/j.scitotenv.2021.147673

Paz Luna A, Bintanel H, Viñuela J, Villanúa D (2020) Nest-boxes for raptors as a biological control system of vole pests: High local success with moderate negative consequences for non-target species. Biological Control 146:104267. https://doi.org/10.1016/j.biocontrol.2020.104267

Peleg O, Nir S, Meyrom K, Aviel S, Roulin A, Izhaki I, Leshem Y, Charter M (2018) Three decades of satisfied Israeli farmers: Barn Owls (Tyto alba) as biological pest control of rodents. Pp. 208-217 en: Woods DM (ed) Proceedings of the 28th Vertebrates Pest Conference. University of California, Davis, California, USA. https://doi.org/10.5070/V42811039

Pettan-Brewer C, Figueroa DP, Cediel-Becerra N, Kahn LH, Martins AF, Biondo AW (2022) Editorial: Challenges and successes of One Health in the context of planetary health in Latin America and the Caribbean. Frontiers in Public Health 10:1081067. https://doi.org/10.3389/fpubh.2022.1081067

Pitt WC, Berentsen AR, Shiels AB, Volker SF, Eisemann JD, Wegmann AS, Howald GR (2015) Non-target species mortality and the measurement of brodifacoum rodenticide residues after a rat (Rattus rattus) eradication on Palmyra Atoll, tropical Pacific. Biological Conservation 85:36–46. https://doi.org/10.1016/j.biocon.2015.01.008

Plaza PI, Lambertucci SA (2020) Ecology and conservation of a rare species: What do we know and what may we do to preserve Andean Condors? Biological Conservation 251:108782. https://doi.org/10.1016/j.biocon.2020.108782

Plaza PI, Martínez-López E, Lambertucci SA (2019) The perfect threat: Pesticides and vultures. Science of the Total Environment 687:1207–1218. https://doi.org/10.1016/j.scitotenv.2019.06.160

Poessel SA, Breck SW, Fox KA, Gese EM (2015) Anticoagulant rodenticide exposure and toxicosis in Coyotes (Canis latrans) in the Denver Metropolitan Area. Journal of Wildlife Diseases 51:265–268. https://doi.org/10.7589/2014-04-116

Powolny T, Bassin N, Crini N, Fourel I, Morin C, Pottinger TG, Massemin S, Zahn S, Coeurdassier M (2020) Corticosterone mediates telomere length in raptor chicks exposed to chemical mixture. Science of the Total Environment 706:135083. https://doi.org/10.1016/j.scitotenv.2019.135083

Quinn N, Kenmuir S, Krueger L (2019) A California without rodenticides: challenges for commensal rodent management in the future. Pp. 40-46 en: Woods DM (ed) Proceedings of the 28th Vertebrates Pest Conference. University of California, Davis, California, USA. https://doi.org/10.5070/V42811007

Rached A, Mahjoub T, Fafournoux A, Barbier B, Fourel I, Caruel H, Lefebvre S, Lattard V (2023) Interest of the faecal and plasma matrix for monitoring the exposure of wildlife or domestic animals to anticoagulant rodenticides. Environmental Toxicology and Pharmacology 97:104033. https://doi.org/10.1016/j.etap.2022.104033

Ratcliffe D A (1970) Changes attributable to pesticides in egg breakage frequency and eggshell thickness in some British birds. Journal of Applied Ecology 7:67–115. https://doi.org/10.2307/2401613

Rattner BA, Harvey JJ (2021) Challenges in the interpretation of anticoagulant rodenticide residues and toxicity in predatory and scavenging birds. Pest Management Science 77:604–610. https://doi.org/10.1002/ps.6137

Rattner BA, Horak KE, Lazarus RS, Goldade Da, Johnston JJ (2014a) Toxicokinetics and coagulopathy threshold of the rodenticide diphacinone in Eastern Screech-Owls (Megascops asio). Environmental Toxicology and Chemistry 33:74–81. https://doi.org/10.1002/etc.2390

Rattner BA, Horak KE, Warner SE, Day DD, Johnston JJ (2010) Comparative toxicity of Diphacinone to Northern Bobwhite (Colinus virginianus) and American Kestrel (Falco sparverius). Pp. 146-152 en: Timm RM, Fagerstone KA (eds) Proceedings of the 24th Vertebrate Pest Conference. University of California Davis, CA, USA. https://doi.org/10.5070/V424110380

Rattner BA, Horak KE, Warner SE, Day DD, Meteyer CU, Volker SF, Eisemann JD, Johnston JJ (2011) Acute toxicity, histopathology, and coagulopathy in American Kestrels (Falco sparverius) following administration of the rodenticide diphacinone. Environmental Toxicology and Chemistry 30:1213–1222. https://doi.org/10.1002/etc.490

Rattner Ba, Lazarus RS, Elliott JE, Shore RF, Van den Brink N (2014b) Adverse outcome pathway and risks of anticoagulant rodenticides to predatory wildlife. Environmental Science and Technology 48:8433–8445. https://doi.org/10.1021/es501740n

Rattner BA, Mastrota FN (2018) Anticoagulant rodenticide toxicity to non-target wildlife under controlled exposure conditions. Pp. 45-86 en: van den Brink N, Elliott J, Shore R, Rattner B (eds) Anticoagulant Rodenticides and Wildlife. Springer International Publishing, Cham, Switzerland. https://doi.org/10.1007/978-3-319-64377-9_3

Rattner B, Volker SF, Lankton JS, Bean TGg, Lazarus RS, Horak KE (2020) Brodifacoum toxicity in American Kestrels (Falco sparverius) with evidence of increased hazard on subsequent anticoagulant rodenticide exposure. Environmental Toxicology and Chemistry 39:468–481. https://doi.org/10.1002/etc.4629

Redig PT, Arent LR (2008) Raptor toxicology. Veterinary Clinics of North America: Exotic Animal Practice 11:261-282. https://doi.org/10.1016/j.cvex.2007.12.004

Regnery J, Schulz RS, Parrhysius P, Bachtin J, Brinke M, Schäfer S, Reifferscheid G, Friesen A (2020) Heavy rainfall provokes anticoagulant rodenticides’ release from baited sewer systems and outdoor surfaces into receiving streams. Science of the Total Environment 740:139905. https://doi.org/10.1016/j.scitotenv.2020.139905

Restrepo-Cardona JS, Parrado MA, Vargas FH, Kohn S, Saenz-Jiménez F, Potaufeu Y, Narváez F (2022) Anthropogenic threats to the Vulnerable Andean Condor in northern South America. PLoS ONE 17:e0278331. https://doi.org/10.1371/journal.pone.0278331

Riley SPD, Bromley C, Poppenga RH, Uzal FA, Whited L, Sauvajot RM (2007) Anticoagulant exposure and notoedric mange in bobcats and mountain lions in urban southern California. Journal of Wildlife Management 71:1874–1884. https://doi.org/10.2193/2005-615

Roos S, Campbell St, Hartley G, Shore RF, Walker LA, Wilson JD (2021) Annual abundance of common Kestrels (Falco tinnunculus) is negatively associated with second generation anticoagulant rodenticides. Ecotoxicology 30:560–574. https://doi.org/10.1007/s10646-021-02374-w

Rost S, Pelz HJ, Menzel S, MacNicoll AD, León V, Song KJ, Jäkel T, Oldenburg J, Müller CR (2009) Novel mutations in the VKORC1 gene of wild rats and mice-a response to 50 years of selection pressure by warfarin? BMC Genetics 10:4. https://doi.org/10.1186/1471-2156-10-4

Ruiz-López MJ, Barahona L, Martínez-de la Puente J, Pepió M, Valsecchi A, Peracho V, Figuerola J, Montalvo T (2022) Widespread resistance to anticoagulant rodenticides in Mus musculus domesticus in the city of Barcelona. Science of the Total Environment 845:157192. https://doi.org/10.1016/j.scitotenv.2022.157192

Ruiz-Suárez N, Henríquez-Hernández LA, Valerón PF, Boada LD, Zumbado M, Camacho M, Almeida-González M, Luzardo OP (2014) Assessment of anticoagulant rodenticide exposure in six raptor species from the Canary Islands (Spain). Science of the Total Environment 485-486:371–376. https://doi.org/10.1016/j.scitotenv.2014.03.094

Sage R, Pearson O, Sanguinetti J, Pearson A (2007) Ratada 2001: A rodent outbreak following the flowering of bamboo (Chusquea culeou) in southwestern Argentina. Pp.177-224 en: Kelt DA, Lessa EP, Salazar-Bravo J, Patton JL (eds). The quintessential naturalist: honoring the life and legacy of Oliver P. Pearson. University of California Publications in Zoology

Saggese MD (2007) Medicina de la conservación, enfermedades y aves rapaces. El Hornero 22:117–130

Saggese MD (2021) Neotropical raptors: promoting research and advancing conservation in the 21st century. Journal of Raptor Research 55:137–138. https://doi.org/10.3356/0892-1016-55.2.137

Saggese MD (2024) Chicken necropsy. Pp. 193-208 en: Khamas W, Rutllant J (eds) Atlas of anatomy and histology of the domestic chicken. Wiley Publishers, New York, NY, USA. https://doi.org/10.1002/9781119841739.ch14

Saggese MD, Plaza P, Casalins L, Ortiz G, Ojeda V (2022) Test Patagonia's raptors for rodenticides. Science 377:1054. https://doi.org/10.1126/science.ade2357

Saggese MD, Quaglia A, Lambertucci SA, Bo MS, Sarasola JH, Pereyra‐ Lobos R, Maceda JJ (2009) Survey of lead toxicosis in free-ranging raptors from central Argentina. Pp. 223-231 en: Watson RT, Fuller M, Pokras M, Hun WG (eds) Ingestion of lead from spent ammunition: implications for wildlife and humans.. The Peregrine Fund, Boise, Idaho, USA https://doi.org/10.4080/ilsa.2009.0211

Salim H, Noor HM, Hamid NH, Omar D, Kasim A, Abidin CM (2014) Secondary poisoning of captive barn owls, Tyto alba javanica through feeding with rats poisoned with chlorophacinone and bromadiolone. Journal of Oil Palm Research 26:62–72

Samour J (2016). Avian Medicine. Elsevier Ltd. New York, NY, USA

Sánchez-Barbudo IS, Camarero PR, Mateo R (2012) Primary and secondary poisoning by anticoagulant rodenticides of non-target animals in Spain. Science of the Total Environment 420:280–288. https://doi.org/10.1016/j.scitotenv.2012.01.028

Scott DE (2020) Raptor medicine, surgery, and rehabilitation. CABI publishers, Boston, MA, USA

Serieys LEK, Lea AJ, Epeldegui M, Armenta TC, Moriarty J, VandeWoude S, Carver S, Foley J, Wayne RK, Riley SPD, Uittenbogaart CH (2018) Urbanization and anticoagulant poisons promote immune dysfunction in bobcats. Proceedings of the Royal Society B, Biological Sciences 285:20172533. https://doi.org/10.1098/rspb.2017.2533

Shaw P, Ogada D, Dunn L, Buij R, Amar A, Garbett R, Herremans M, Virani M, Kendall C, Croes B, Odino M, Kapila S, Wairasho P, Rutz C, Botha A, Gallo-Orsi U, Murn C, Maude G, Thomsett S (2024) African savanna raptors show evidence of widespread population collapse and a growing dependence on protected areas. Nature Ecology and Evolution 8:45-56. https://doi.org/10.1038/s41559-023-02236-0

Shore RF, Coeurdassier M (2018) Primary Exposure and Effects in Non-target Animals. Pp. 135-157 en: van den Brink N, Elliott J, Shore R, Rattner B (eds) Anticoagulant Rodenticides and Wildlife. Springer International Publishing, Cham, Switzerland. https://doi.org/10.1007/978-3-319-64377-9_6

Slater SJ, Dwyer JF, Murgatroyd M (2020) Conservation Letter: Raptors and overhead electrical systems. Journal of Raptor Research 54:198–203. https://doi.org/10.3356/0892-1016-54.2.198

Soulé ME (1985) What Is Conservation Biology? BioScience 35:727-734. https://doi.org/10.2307/1310054

Spadetto L, Gómez-Ramírez P, Zamora-Marín JM, León-Ortega M, Díaz-García S, Tecles F, Fenoll J, Cava J, Calvo JF, García-Fernández AJ (2024) Active monitoring of long-eared owl (Asio otus) nestlings reveals widespread exposure to anticoagulant rodenticides across different agricultural landscapes. Science of the Total Environment 918:170492. https://doi.org/10.1016/j.scitotenv.2024.170492

Stone WB, Okoniewski JC, Stedelin JR (1999) Poisoning of wildlife with anticoagulant rodenticides in New York. Journal of Wildlife Diseases 35:187–193. https://doi.org/10.7589/0090-3558-35.2.187

Stone WB, Okoniewski JC, Stedelin JR (2003) Anticoagulant rodenticides and raptors: recent findings from New York, 1998-2001. Bulletin of Environmental Contamination and Toxicology 70:34–40 https://doi.org/10.1007/s00128-002-0152-0

Swan GE, Cuthbert R, Quevedo M, Green RE, Pain DJ, Bartels P, Cunningham AA, Duncan N, Meharg AA, Oaks JL, Parry-Jones J, Shultz S, Taggart MA, Verdoorn G, Wolter K (2006) Toxicity of diclofenac to Gyps vultures. Biology Letters 2:279–282. https://doi.org/10.1098/rsbl.2005.0425

Swenson J, Bradley GA (2013) Suspected cholecalciferol rodenticide toxicosis in avian species at a zoological institution. Journal of Avian Medicine and Surgery 27:136–147. https://doi.org/10.1647/2011-062

Tavernier P, Saggese MD, van Wettere A, Redig PT (2005) Malaria in an Eastern Screech Owl (Otus asio). Avian Diseases 49:433–435. https://doi.org/10.1637/7318-122904R.1

Thomas PJ, Mineau P, Shore RF, Champoux L, Martin PA, Wilson LK, Fitzgerald G, Elliott JE (2011) Second generation anticoagulant rodenticides in predatory birds: probabilistic characterisation of toxic liver concentrations and implications for predatory bird populations in Canada. Environment International 37:914–920 (and corrigendum 40:256). https://doi.org/10.1016/j.envint.2011.03.010

Toulon P, Metge S, Hangard M, Zwahlen S, Piaulenne S, Besson V (2017) Impact of different storage times at room temperature of unspun citrated blood samples on routine coagulation tests results. Results of a bicenter study and review of the literature. International Journal of Laboratory Hematology 39:458–468. https://doi.org/10.1111/ijlh.12660

Trejo A (2007) Identification of important species and priority areas for the study of reproduction of raptors in Argentina. El Hornero 22:85–96

Trejo A, Ojeda V (2015) Aportes desde la vertiente argentina al conocimiento de las aves rapaces del bosque templado austral. Boletín Chileno de Ornitología 21:15-28

Valchev I, Binev R, Yordanova V, Nikolov Y (2008) Anticoagulant rodenticide intoxication in animals - A review. Turkish Journal of Veterinary and Animal Sciences 32:237–243

Valverde I, Espín S, Gómez-Ramírez P, Navas I, María-Mojica P, Sánchez-Virosta P, Jiménez P, Torres-Chaparro MY, García-Fernández AJ (2021) Wildlife poisoning: a novel scoring system and review of analytical methods for anticoagulant rodenticide determination. Ecotoxicology 30:767-782. https://doi.org/10.1007/s10646-021-02411-8

Valverde I, Espín S, Gómez-Ramírez P, Navas I, Sánchez-Virosta P, Torres-Chaparro MY, Jiménez P, María-Mojica P, García-Fernández AJ (2020) Temporal persistence of bromadiolone in decomposing bodies of Common Kestrel (Falco tinnunculus). Toxics 8:98. https://doi.org/10.3390/toxics8040098

van den Brink NW, Elliot JE, Shore RF, Rattner BA (2018) Anticoagulant rodenticides and wildlife: introduction. Pp. 1–9 en: van den Brink N, Elliott J, Shore R, Rattner B (eds). Anticoagulant Rodenticides and Wildlife. Springer International Publishing, Cham, Switzerland

Vandenbroucke V, Bousquet-Melou A, De Backer P, Croubels S (2008) Pharmacokinetics of eight anticoagulant rodenticides in mice after single oral administration. Journal of Veterinary Pharmacology and Therapeutics 31:437–445. https://doi.org/10.1111/j.1365-2885.2008.00979.x

Vein J, Grandemange A, Cosson JF, Benoit E, Berny PJ (2011) Are water vole resistant to anticoagulant rodenticides following field treatments? Ecotoxicology 20:1432-1441. https://doi.org/10.1007/s10646-011-0700-7

Vyas NB, Kuncir F, Clinton CC (2017) Influence of poisoned prey on foraging behavior of Ferruginous Hawks. The American Midland Naturalist 177:75–83. https://doi.org/10.1674/0003-0031-177.1.75

Vyas NB, Rattner BA, Lockhart JM, Hulse CS, Rice CP, Kuncir F, Kritz K (2022) Toxicological responses to sublethal anticoagulant rodenticide exposure in free-flying hawks. Environmental Science and Pollution Research 29:74024–74037. https://doi.org/10.1007/s11356-022-20881-z

Watt BE, Proudfoot AT, Bradberry SM, Vale JA (2005) Anticoagulant rodenticides. Toxicology Reviews 24:259–269. https://doi.org/10.2165/00139709-200524040-00005

Willette M, Ponder J, Cruz-Martinez L, Arent L, Bueno Padilla I, De Francisco ON, Redig (2009) Management of select bacterial and parasitic conditions of raptors. Veterinary Clinics of North America. Exotic Animal Practice 12:491–517. https://doi.org/10.1016/j.cvex.2009.06.006

Young J, De Lai L (1997) Population declines of predatory birds coincident with the introduction of Klerat rodenticide in North Queensland. Australian Bird Watcher 17:160–167

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.