Aplicando técnicas de bioacústica a estudios de ornitología urbana: guía y recomendaciones
Tapa del numero actual
PDF

Palabras clave

aves
bioacústica
conservación
ecología urbana
herramienta de investigación
monitoreo acústico pasivo
paisaje sonoro
tecnología

Cómo citar

Bahía, Rocío, Sergio A. Lambertucci, y Karina L. Speziale. 2022. «Aplicando técnicas De Bioacústica a Estudios De ornitología Urbana: Guía Y Recomendaciones». El Hornero 37 (2). Argentina, ARG. https://doi.org/10.56178/eh.v37i2.394.

Resumen

Una de las principales maneras de comunicarse de las aves, a través de la emisión de sonidos o vocalizaciones, puede verse afectada por los sonidos derivados de las actividades antrópicas. Estos disturbios (ruidos) interfieren en la comunicación pudiendo afectar la identificación de pares, los procesos reproductivos, la defensa de los territorios e, incluso, la composición y diversidad de las comunidades de aves. Las urbanizaciones son fuente de alta emisión de ruidos antropogénicos y constituyen ambientes sonoros complejos para las aves. La bioacústica, a través del monitoreo acústico pasivo (MAP), es una de las herramientas en auge y con numerosas ventajas que resultan particularmente útiles en estudios de ecología urbana. El MAP es un método no invasivo y eficiente que permite obtener información de forma autónoma, continua, simultánea y en diversas condiciones ambientales. A pesar de esto, resulta una herramienta aún poco explotada en los países del Neotrópico. Realizamos una descripción metodológica mostrando las potencialidades del MAP en investigaciones de aves y, particularmente en aquellas que ocurren en ambientes urbanos y/o peri-urbanos. Para esto realizamos una revisión no sistemática de la bibliografía existente, resumiendo nociones básicas del sonido y su proceso de grabación, opciones de micrófonos y grabadores asociados al MAP, diseños de muestreo, programas de análisis e índices acústicos. También, presentamos ejemplos de estudios nuestros sobre el MAP en ambientes urbanos de la Patagonia. Resaltamos el valor de esta herramienta de estudio para investigaciones a largo plazo, en sitios complejos de estudiar, para programas de monitoreo y proyectos de conservación.

https://doi.org/10.56178/eh.v37i2.394
PDF

Citas

Aide TM, Corrada-Bravo C, Campos-Cerqueira M, Milan C, Vega G y Alvarez R (2013) Real-time bioacoustics monitoring and automated species identification. PeerJ 1:e103.

Alcocer I, Lima H, Sugai Lsm y Llusia D (2022). Acoustic indices as proxies for biodiversity: a meta-analysis. Biological Reviews 97:2209-2236.

Aronson MF, La Sorte FA, Nilon CH, Katti M, Goddard MA, Lepczyk CA, Warren PS, Williams NS, Cilliers S y Clarkson B (2014) A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proceedings of the Royal Society B: Biological Sciences 281:20133330.

Bahia R, Lambertucci SA, Plaza PI y Speziale KL (2021) Antagonistic-mutualistic interaction between parrots and plants in the context of global change: Biological introductions and novel ecosystems. Biological Conservation, 109399.

Bahia R, Speziale K y Lambertucci SA (2022). Sacar la voz: Tres especies de aves del Bosque Andino-Patagónico cambian sus vocalizaciones en respuesta al sonido antrópico. XIX Reunión Argentina de Ornitología, Puerto Madryn. doi: 10.13140/RG.2.2.27591.78241

Baker MC y Logue DM (2007) A comparison of three noise reduction procedures applied to bird vocal signals. Journal of Field Ornithology 78:240–253.

Blumstein DT, Mennill DJ, Clemins P, Girod L, Yao K, Patricelli G, Deppe JL, Krakauer AH, Clark C y Cortopassi KA (2011) Acoustic monitoring in terrestrial environments using microphone arrays: applications, technological considerations and prospectus. Journal of Applied Ecology 48:758–767.

Boelman NT, Asner GP, Hart PJ y Martin RE (2007) Multi‐trophic invasion resistance in Hawaii: bioacoustics, field surveys, and airborne remote sensing. Ecological Applications 17:2137–2144.

Borker AL, McKown MW, Ackerman JT, EAGLES‐SMITH CA, Tershy BR y Croll DA (2014) Vocal activity as a low cost and scalable index of seabird colony size. Conservation Biology 28: 1100–1108.

Bradbury J y Vehrencamp S (2011) Principles of animal communication, 2nd edn Sunderland. MA: Sinauer Associates.

Browning E, Gibb R, Glover-Kapfer P y Jones KE (2017) Passive acoustic monitoring in ecology and conservation. 76pp. WWF Conservation Technology Series 1(2).

Brumm H (2004) The impact of environmental noise on song amplitude in a territorial bird. Journal of Animal Ecology, 434–440.

Brumm H y Slabbekoorn H (2005) Acoustic communication in noise. Advances in the Study of Behavior 35:151–209.

Catchpole CK y Slater PJ (2003) Bird song: biological themes and variations. Cambridge University press.

Caycedo-Rosales PC, Ruiz-Muñoz JF y Orozco-Alzate M (2013) Reconocimiento automatizado de señales bioacústicas: Una revisión de métodos y aplicaciones. Ingeniería y Ciencia 9:171–195.

Chace JF y Walsh JJ (2006) Urban effects on native avifauna: a review. Landscape and Urban Planning 74:46–69.

Chambert T, Waddle JH, Miller DA, Walls SC y Nichols JD (2018) A new framework for analysing automated acoustic species detection data: Occupancy estimation and optimization of recordings post‐processing. Methods in Ecology and Evolution 9:560–570.

Cole JS, Michel NL, Emerson SA y Siegel RB (2022) Automated bird sound classifications of long-duration recordings produce occupancy model outputs similar to manually annotated data. Ornithological Applications 124:duac003.

Darras K, Furnas B, Fitriawan I, Mulyani Y y Tscharntke T (2018) Estimating bird detection distances in sound recordings for standardizing detection ranges and distance sampling. Methods in Ecology and Evolution 9:1928–1938.

Darras K, Pütz P, Rembold K y Tscharntke T (2016) Measuring sound detection spaces for acoustic animal sampling and monitoring. Biological Conservation 201:29–37.

Deichmann JL, Hernández-Serna A, Campos-Cerqueira M y Aide TM (2017) Soundscape analysis and acoustic monitoring document impacts of natural gas exploration on biodiversity in a tropical forest. Ecological Indicators 74:39–48.

Depraetere M, Pavoine S, Jiguet F, Gasc A, Duvail S y Sueur J (2012) Monitoring animal diversity using acoustic indices: implementation in a temperate woodland. Ecological Indicators 13:46–54.

Elizalde L y Lambertucci SA (2022). Private gardens in a town immersed in a National Park: Potential for conservation and highly valued under COVID lockdown. Landscape and Urban Planning 226:104481.

Figueira L, Tella JL, Camargo UM y Ferraz G (2015) Autonomous sound monitoring shows higher use of Amazon old growth than secondary forest by parrots. Biological Conservation 184:27–35.

Fischer JD, Schneider SC, Ahlers AA y Miller JR (2015) Categorizing wildlife responses to urbanization and conservation implications of terminology. Conservation Biology 29:1246–1248.

Fontana CS, Burger MI y Magnusson WE (2011) Bird diversity in a subtropical South-American City: effects of noise levels, arborisation and human population density. Urban Ecosystems 14:341–360.

Frommolt K-H (2017) Information obtained from long-term acoustic recordings: applying bioacoustic techniques for monitoring wetland birds during breeding season. Journal of Ornithology 158:659–668.

Garaffa PI, Filloy J y Bellocq MI (2009) Bird community responses along urban–rural gradients: does the size of the urbanized area matter? Landscape and Urban Planning 90:33–41.

Gasc A, Francomano D, Dunning JB y Pijanowski BC (2017) Future directions for soundscape ecology: The importance of ornithological contributions. The Auk: Ornithological Advances 134:215–228.

Gil D y Brumm H (2014) Avian urban ecology. Oxford University Press.

Gil D, Honarmand M, Pascual J, Pérez-Mena E y Macías Garcia C (2015) Birds living near airports advance their dawn chorus and reduce overlap with aircraft noise. Behavioral Ecology 26:435–443.

Goddard MA, Ikin K y Lerman SB (2017). Ecological and social factors determining the diversity of birds in residential yards and gardens. Pp: 371-397. In: Ecology and conservation of birds in urban environments. Springer, Cham.

Gomes L, Solé M, Sousa-Lima RS y Baumgarten JE (2022) influence of anthropogenic sounds on insect, anuran and bird acoustic signals: A Meta-Analysis. Frontiers in Ecology and Evolution 10:827440.

Gonçalves SF, de Paula Lourenco AC, de Sousa Bueno Filho JS y de Toledo MCB (2021) Characteristics of residential backyards that contribute to conservation and diversity of urban birds: A case study in a Southeastern Brazilian city. Urban Forestry & Urban Greening, 61:127095.

Goyette JL, Howe RW, Wolf AT y Robinson WD (2011) Detecting tropical nocturnal birds using automated audio recordings. Journal of Field Ornithology 82:279–287.

Hansen AJ, Knight RL, Marzluff JM, Powell S, Brown K, Gude PH y Jones K (2005) Effects of exurban development on biodiversity: patterns, mechanisms, and research needs. Ecological Applications 15:1893–1905.

Harding HR, Gordon TA, Eastcott E, Simpson SD y Radford AN (2019) Causes and consequences of intraspecific variation in animal responses to anthropogenic noise. Behavioral Ecology 30:1501–1511.

Herrera F (2002) Ecolocalización en guácharos: volando en la oscuridad. Boletín de la sociedad Venezolana de Espeleología 36:6–10.

Hu Y y Cardoso GC (2010) Which birds adjust the frequency of vocalizations in urban noise? Animal Behaviour 79:863–867.

Kasten EP, Gage SH, Fox J y Joo W (2012) The remote environmental assessment laboratory’s acoustic library: An archive for studying soundscape ecology. Ecological informatics 12:50–67.

Kowarik I (2011) Novel urban ecosystems, biodiversity, and conservation. Environmental Pollution 159:1974–1983.

Kułaga K y Budka M (2019) Bird species detection by an observer and an autonomous sound recorder in two different environments: Forest and farmland. PLoS One 14: e0211970.

Laiolo P (2010) The emerging significance of bioacoustics in animal species conservation. Biological Conservation 143:1635–1645.

Lambert KT y McDonald PG (2014) A low‐cost, yet simple and highly repeatable system for acoustically surveying cryptic species. Austral Ecology 39:779–785.

León E, Beltzer A y Quiroga M (2014) El jilguero dorado (Sicalis flaveola) modifica la estructura de sus vocalizaciones para adaptarse a hábitats urbanos. Revista mexicana de Biodiversidad 85:546–552.

de Magalhães Tolentino VC, Baesse CQ y de Melo C (2018) Dominant frequency of songs in tropical bird species is higher in sites with high noise pollution. Environmental Pollution 235:983–992.

Manzano R, Bota G, Brotons L, Soto-Largo E y Pérez-Granados C (2022) Low-cost open-source recorders and ready-to-use machine learning approaches provide effective monitoring of threatened species. Ecological Informatics 101910.

McClure CJ, Ware HE, Carlisle J, Kaltenecker G y Barber JR (2013) An experimental investigation into the effects of traffic noise on distributions of birds: avoiding the phantom road. Proceedings of the Royal Society B: Biological Sciences 280:20132290.

Mendes S, Colino-Rabanal VJ y Peris SJ (2011) Diferencias en el canto de la ratona común (Troglodytes musculus) en ambientes con distintos niveles de influencia humana. Hornero 26:85–93.

Merchant ND, Fristrup KM, Johnson, MP, Tyack PL, Witt MJ, Blondel P y Parks SE (2015) Measuring acoustic habitats. Methods in Ecology and Evolution 6:257–265.

Munro J, Williamson I y Fuller S (2018) Traffic noise impacts on urban forest soundscapes in south‐eastern Australia. Austral Ecology 43:180–190.

Nemeth E, Pieretti N, Zollinger SA, Geberzahn N, Partecke, J, Miranda AC y Brumm H (2013) Bird song and anthropogenic noise: vocal constraints may explain why birds sing higher-frequency songs in cities. Proceedings of the Royal Society B: Biological Sciences 280: 20122798.

Newman G, Wiggins A, Crall A, Graham E, Newman S y Crowston K (2012) The future of citizen science: emerging technologies and shifting paradigms. Frontiers in Ecology and the Environment 10:298–304.

Pérez-Granados C, Bota G, Giralt D y Traba J (2018) A cost-effective protocol for monitoring birds using autonomous recording units: a case study with a night-time singing passerine. Bird study 65:338–345.

Pérez-Granados C, Gómez-Catasús J, Bustillo-de la Rosa D, Barrero A, Reverter M y Traba J (2019) Effort needed to accurately estimate Vocal Activity Rate index using acoustic monitoring: A case study with a dawn-time singing passerine. Ecological Indicators 107:105608.

Pérez-Granados C y Schuchmann K-L (2020) Monitoring the annual vocal activity of two enigmatic nocturnal Neotropical birds: the Common Potoo (Nyctibius griseus) and the Great Potoo (Nyctibius grandis). Journal of Ornithology 161:1129–1141.

Pérez‐Granados C y Traba J (2021) Estimating bird density using passive acoustic monitoring: a review of methods and suggestions for further research. Ibis 163:765–783.

Petrusková T, Pišvejcová I, Kinštová A, Brinke T y Petrusek A (2016) Repertoire‐based individual acoustic monitoring of a migratory passerine bird with complex song as an efficient tool for tracking territorial dynamics and annual return rates. Methods in Ecology and Evolution 7:274–284.

Pieretti N, Farina A y Morri D (2011) A new methodology to infer the singing activity of an avian community: the Acoustic Complexity Index (ACI). Ecological Indicators 11:868–873.

Pijanowski BC, Farina A, Gage SH, Dumyahn SL y Krause BL (2011) What is soundscape ecology? An introduction and overview of an emerging new science. Landscape Ecology 26:1213–1232.

Priyadarshani N, Castro I y Marsland S (2018) The impact of environmental factors in birdsong acquisition using automated recorders. Ecology and Evolution 8:5016–5033.

Rempel RS, Hobson KA, Holborn G, Van Wilgenburg SL y Elliott J (2005) Bioacoustic monitoring of forest songbirds: interpreter variability and effects of configuration and digital processing methods in the laboratory. Journal of Field Ornithology 76:1–11.

Ribeiro JW, Sugai LSM y Campos-Cerqueira M (2017) Passive acoustic monitoring as a complementary strategy to assess biodiversity in the Brazilian Amazonia. Biodiversity and Conservation 26:2999–3002.

Rodríguez-Vargas RR y Perdomo-Velázquez H (2014) Tecnología para captar el sonido: Una comparación de los micrófonos utilizados en bioacústica. Quehacer Científico en Chiapas 9:34-47.

Sayers II C, Moreland C, Morgan H y Arévalo JE (2019) Efecto de corto plazo del ruido por tráfico sobre coros de aves en un bosque nuboso neotropical. Zeledonia 23(2):8-28.

Sebastián‐González E, Pang‐Ching J, Barbosa, JM y Hart P (2015) Bioacoustics for species management: two case studies with a Hawaiian forest bird. Ecology and evolution 5:4696–4705.

Shonfield J y Bayne E (2017) Autonomous recording units in avian ecological research: current use and future applications. Avian Conservation and Ecology 12.

Slabbekoorn H y den Boer-Visser A (2006) Cities change the songs of birds. Current Biology 16:2326–2331.

Slabbekoorn H y RIPMEESTER EAP (2008) Birdsong and anthropogenic noise: implications and applications for conservation. Molecular Ecology 17:72–83.

Snaddon J, Petrokofsky G, Jepson P y Willis KJ (2013) Biodiversity technologies: tools as change agents. Biological Letter 9: 20121029.

Soares L, Cockle K, Inzunza ER, Ibarra JT, Miño CI, Zuluaga S, Bonaccorso E, Ríos-Orjuela JC, Montano-Centellas FA, Freile JF, et al. (2023) Neotropical Ornithology: Reckoning with historical assumptions, removing systemic barriers, and reimagining the future. Ornithological Applications, en prensa.

Sueur J (2018) Sound analysis and synthesis with R. Springer Cham.

Sueur J, Aubin T y Simonis C (2008) Seewave, a free modular tool for sound analysis and synthesis. Bioacoustics 18:213–226.

Sueur J y Farina A (2015) Ecoacoustics: the ecological investigation and interpretation of environmental sound. Biosemiotics 8:493–502.

Sugai LSM, Desjonqueres C, Silva TSF y Llusia D (2020) A roadmap for survey designs in terrestrial acoustic monitoring. Remote Sensing in Ecology and Conservation 6:220–235.

Sugai LSM, Silva TSF, Ribeiro Jr JW y Llusia D (2019) Terrestrial passive acoustic monitoring: review and perspectives. BioScience 69:15–25.

Turgeon P, Van Wilgenburg S y Drake K (2017) Microphone variability and degradation: implications for monitoring programs employing autonomous recording units. Avian Conservation and Ecology 12.

Villanueva-Rivera LJ, Pijanowski BC, Doucette J y Pekin B (2011) A primer of acoustic analysis for landscape ecologists. Landscape Ecology 26:1233–1246.

Williams EM, O’Donnell CF y Armstrong DP (2018) Cost‐benefit analysis of acoustic recorders as a solution to sampling challenges experienced monitoring cryptic species. Ecology and Evolution 8:6839–6848.

Wimmer, J, Towsey M, Roe P y Williamson I (2013) Sampling environmental acoustic recordings to determine bird species richness. Ecological Applications 23:1419–1428.

Wood CM, Kahl S, Chaon P, Peery MZ y Klinck H (2021) Survey coverage, recording duration and community composition affect observed species richness in passive acoustic surveys. Methods in Ecology and Evolution 12:885–896.

Wood CM, Kahl S, Rahaman A y Klinck H (2022) The machine learning–powered BirdNET App reduces barriers to global bird research by enabling citizen science participation. PLoS Biology 20:e3001670.

Wood WE y Yezerinac SM (2006) Song Sparrow (Melospiza melodia) song varies with urban noise. The Auk 123:650–659

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.