AVIAN SEASONALITY AT A LOCALITY IN THE CENTRAL PARAGUAYAN CHACO

DANIEL M. BROOKS

Texas A&M University; Department of Wildlife and Fisheries Sciences; Texas Cooperative Wildlife Collections; College Station, Texas 77843. USA. E-Mail: Ecotropix@aol.com

ABSTRACT. Abundances of different species of birds were recorded in the central Paraguayan Chaco from August 1989 to August 1990 to investigate seasonal variation at the guild level. Species were grouped into guilds based upon primary diet or water dependence. The number of species (abundant: rare) in each guild is as follows: insectivores (21:35), granivores and foliovores (20:6), faunivores (14:13), hydrophilic species (4:28), detrivores (3:1), nectarivores (1:1), and frugivores (0:5). Insectivores show the strongest seasonality (SD = 1.63) followed by hydrophilic species (SD = 1.43), nectarivore (SD = 1.41), faunivores (SD = 1.33), granivores and foliovores (SD = 1.20), and detrivores (SD = 0.50). Chi-square tests indicated that differences between numbers of abundant versus rare insectivores (P < 0.01), granivores (P < 0.005), and hydrophilic species (P << 0.005) were highly significant. Results are interpreted in light of ecological and evolutionary processes.

Key words: seasonality, resources, avian community, Chaco, Paraguay

Estacionalidad en las aves del Chaco Paraguayo central

RESUMEN. Registré la abundancia de especies de aves en el Chaco Paraguayo central, Agosto de 1989 hasta Agosto de 1990, para investigar la variación estacional al nivel de grupo funcional o gremio (guild). Las características usadas para definir grupos funcionales fueron la dependicia del agua o la dieta primaria. El numero de especies (abundancia : raro) por grupo funcional son: insectívoras (21:35), granívoras and folivoras (20:6), faunívoras (14:13), especies asociadas al agua (4:28), detritívoras (3:1), nectarívoras (1:1), y frugívoras (0:5). El grupo con la variación estacional mayor fue las insectívoras (SD = 1.63), siguiéndoles las especies asociado al agua, (SD = 1.43), las nectarívoras (SD = 1.41), faunívoras (SD = 1.33), granívoras and folívoras (SD = 1.20), y detritívoras (SD = 0.50). Pruebas de chi cuadrado indican que la diferencia entre especies abundantes y raras son muy significativas para las insectívoras (P < 0.01), granívoras (P < 0.005), y especies asociadas al agua (P << 0.005). Los resultados se interpretan en términos de procesos, de ecología y evolución.

Palabras clave: estacionalidad, recursos, comunidad de aves, Chaco, Paraguay

INTRODUCTION

The Chaco is a mosaic of xeric habitats in the central portion of South America where several different neotropical biomes (including sub-humid forest, pantanal, tropical savannah, and pampas) interdigitate in the areas of southeastern Bolivia, western Paraguay, and northern Argentina. The area is characterized by low avian endemism bio-

geographically (Short 1975) and is an effective barrier to forest birds, but not woodland or grassland birds (Nores 1992, Hayes 1995).

The Chacoan avifauna was documented by Short (1975), who concentrated on biogeographic aspects. Since then several studies have been undertaken on birds in the Paraguayan Chaco (e.g., Short 1976; Short 1980; Contreras & Mandelburger 1985; Contreras & Gonzalez-Romero 1989; Gonzalez-Romero & Contreras 1989; Haves et al. 1990; Peris 1990; Peris et al. 1987; Neris & Colman 1991; Hayes et al. 1991; Brooks 1991, 1995, 1997; Hayes 1995). Although some of these studies have investigated seasonal variation for specific assemblages such as shorebirds and waterbirds, none have attempted to investigate seasonal variation for an entire avian community at the guild level (Hayes pers. comm.). The objective of this paper is to determine the role of limiting resources in influencing seasonality of birds from a site in the semi-xeric Paraguayan Chaco.

Seasonal variation can be defined as variation in annual abundance. Many tropical environments are sharply seasonal, and associated with rainfall rather than temperature variations. These changes affect habitat structure and food supplies, and one would expect the bird species to respond (Wiens 1989). Klopfer (1959) suggested that where seasonal environmental fluctuations are minimal, the type of cover, nesting sites, and food which are available remain fairly constant.

METHODS

STUDY AREA

Species included in this study (Table 1) were found within a 35 km radius of Estancia Fortín Toledo proper (hereafter, referred as Toledo) (22°33'S,60°30'W), Department Boquerón, 35 km W of the Mennonite Colony, Filadelfía. This area, like much of the central Paraguayan Chaco, has been extensively cleared for cattle production (Benirschke et al. 1989). The second-growth hab-

itat in the vicinity of Toledo is a mosaic of "quebracho" woodland and grassland (Short 1975), characterized by thorny bushes, shrubs, and cacti, with scattered trees up to 13 m high. Prosopis ruscifolia, a thorny legume, and Opuntia sp. cactus are the dominant species (López et al. 1987). Isolated tracts of thick, impenetrable, thorny forest are sometimes left when land is being cleared for agrarian purposes. The understory in such forest consists of thorny Bromelia serra and Cleistocactus baumanii (Stabler 1985). Tajamares (man-made, seasonal ponds) and filled gulleys from massive rains are present throughout the study area.

SAMPLING METHODS

This study took place from August 1989 to August 1990. Narosky & Yzurieta (1987), Meyer de Schauensee (1982), and Dunning (1987) were used to identify unknown species. Abundance data were obtained from observations of live birds and were ranked numerically using a standardized scale for all taxa. During some months certain species were absent from Toledo proper but present within the 35 km radius of the centerpoint, so a special rank (1) was used to indicate such situations of local movements. Additionally, ranks of 2 and 3 were indicative of singletons being present rather than multiple individuals, reflecting transitory movements or a low point during migration. The following monthly scale was used: 0 =absent: not observed during a given month; 1 = local movements: observed within 35 km of the study area's centerpoint but not at Toledo proper; 2 = monthly transient individual: observation of one individual per month persisting in study area no more than 24 hrs.; 3 = monthly resident individual: observation of one individual per month persisting in study area more than 24 hrs; 4 = uncommon: two to five individuals observed per survey day; 5 = common: six to nine individuals observed per survey day; 6 = abundant: ten or more individuals observed per survey day.

Data were collected by walking an average of 1.75 km of transect daily through a

Table 1. Abundant Species at Toledo+

GUILD	Months SONDJFMAMJJA	SD score
Species		
INSECTIVORES		
Dark-billed Cuckoo Coccyzus melacoryphus	000445444242	1.86
Smooth-billed Ani Crotophaga ani	045544440241	1.83
Guira Cuckoo Guira guira	644555656544	0.79
White Woodpecker Leuconerpes candidus	020004454440	2.09
Narrow-billed Woodcreeper Lepidocolaptes angustirostris	444344444244	0.62
Rufous Hornero Furnarius rufus	044544440000	2.15
Crested Hornero Furnarius cristatus	064245444454	1.52
Chotoy Spinetail Schoeniophylax phryganophila	000222444444	1.73
Little Thornbird Phacellodomus sibilatrix	000004445544	2.23
Lark-like Brushrunner Coryphistera alaudina	654454444554	0.67
Small-billed Elaenia Elaenia parvirostris	000444445544	1.94
White Monjita Xolmis irupero	144445444454	0.99
Black-backed Water-tyrant Fluvicola albiventer	045444444200	1.88
Cattle Tyrant Machetornis rixosus	444424445544	0.73
Tropical Kingbird Tyrannus melancholicus	066445444044	1.91
Fork-tailed Flycatcher Tyrannus savana	465545400000	2.49
Crowned-slaty Flycatcher Griseotyrannus aurantioatrocristatus	066554400000	2.67
Great Kiskadee Pitangus sulphuratus	06565444444	1.52
White-banded Mockingbird Mimus triurus	444000055544	2.19
Masked Gnatcatcher Polioptila dumicola	44445455444	0.45
Epaulet Oriole Icterus cayanensis	054024044204	1.97
(n=21)	Mean SD =	1.63
()		
GRANIVORES AND FOLIOVORES	545420142444	
Brushland Tinamou Nothoprocta cinerascens	545420142444	1.60
Spotted Tinamou Nothura maculosa	222444424454	1.08
Greater Rhea Rhea americana	445654544454	0.67
Chaco Chachalaca Ortalis canicollis	41444444144	1.16
Picazuro Pigeon Columba picazuro	566545665444	0.85
Eared Dove Zenaida auriculata	000554544444	2.00
Picui Ground-dove Columbina picui	666655566655	0.51
White-tipped Dove Leptotila verreauxi	655442344455	1.05
Blue-crowned Parakeet Aratinga acuticaudata	045444446544	1.41
Nanday Parakeet Nandayus nenday	044440440040	2.05
Monk Parakeet Myiopsitta monachus	666646655444	0.93
Blue-fronted Parrot Amazona aestiva	45564544444	0.66
House Sparrow Passer domesticus	044444421042	1.65
Red-crested Cardinal Paroaria coronata	666445556655	0.75
Many-colored Chaco-finch Saltatricula multicolor	000004445454	2.23
Red-crested Finch Coryphospingus cucullatus	544444204566	1.65
Saffron Yellow-Finch Sicalis flaveola	044545444444	1.26
Golden-billed Saltator Saltator aurantiirostris	65444444455	0.66
Bay-winged Cowbird Molothurus badius	666444544444	0.90
Shiny Cowbird Molothurus bonariensis	666654444444	0.96
(n=20)	Mean SD =	1.20
FAUNIVORES		
Plumbeous Ibis Theristicus caerulescens	454444424454	0.73
Buff-necked Ibis Theristicus caudatus	444544545444	0.45
White-tailed Kite Elanus leucurus	000225244444	1.83
Snail Kite Rostrhamus sociabilis	002244544240	1.83
Great Black-Hawk Buteogallus urubitinga	444421204245	1.53
Savannah Hawk Buteogallus meridionalis	234455444444	0.79
Roadside Hawk Buteo magnirostris	104425456654	1.89
White-tailed Hawk Buteo albicaudatus	004455444044	1.94
American Kestrel Falco sparverius	01445444444	1.44
Aplomado Falcon Falco femoralis	024440144242	1.62
Red-legged Seriema Cariama cristata	141444454444	1.24
Black-legged Seriema Chunga burmeisteri	45444444444	0.28
Southern Lapwing Vanellus chilensis	454500444444	1.67

	40444047444	
Rufous-legged Owl Strix rufipes	404440454442	1.65
(n=14)	Mean SD =	1.33
HYDROPHILIC SPECIES		
Ringed Teal Calonetta leucophrys	654446666544	0.95
Whistling Heron Syrigma sibilatrix	4444444454	0.28
Great Egret Casmerodius albus	400050445544	2.19
Black-crowned Night-heron Nycticorax nycticorax	004455544000	2.31
(n=4)	Mean SD =	1.43
DETRIVORES		
Black Vulture Coragyps atratus	44444445544	0.38
Turkey Vulture Cathartes aura	444445544444	0.38
Crested Caracara Polyborus plancus	654555654444	0.75
(n=3)	Mean SD =	0.50
NECTARIVORES		
Glittering-bellied Emerald Chlorostilbon aureoventris	45564044444	1.41
(n=1)	Mean SD =	1.41

⁺Taxonomy follows Hayes 1995.

mosaic of habitat types, including two tajamars. This was complemented by an average of 225 min of observation from one of three blinds daily. Two of the blinds were located in quebracho woodland at feeding sites baited primarily with succulent cactus, squash and corn. The third blind was elevated approximately 9 m off the ground and located next to a mulberry tree where many passerine species foraged.

Although these methods accounted for most of the species present in the study, longer road transects through all habitats were employed to increase the sampling area. Road transects were easily performed in the relatively open central Chaco, in contrast to more closed forest where many species would go undetected. The predominant habitats along road transect 1 (RT1) included quebracho woodland, agrarian pasture, and grassland, although forest edge and some tajamares were also present. In addition to the habitats represented along RT1, road transect 2 (RT2) contained one of the largest, most contiguous tracts of forest in the study area. This forest was sampled by direct scanning to insure that forest species were adequately accounted for. RT1 was sampled weekly and involved 70 km surveys conducted through eastern Toledo to Filadelfia and back. RT2 was sampled monthly and involved surveys extending 9.3 km through western Toledo. Approximately one stop per survey was averaged to identify species that were not immediately recognizable. Birds would occasionally retreat to cover (e.g., deeper into the brush) before it was possible to identify the species. These individuals were excluded from the data.

Weather elements often trigger increased or decreased reproductive or foraging activity that could alter detectability of samples resulting in overcounted or missed individuals (Robbins 1981). To test whether such biases in detectability occurred, abiotic variable data were collected to correlate with abundance of species that were present at Toledo year-round, without ranks of 0 or 1 for any given month. Temperature was recorded using a standard high-low celcius thermometer, rainfall was recorded in millimeters using a standard rain gauge, cloud cover (clear = 1, partly cloudy = 3, cloudy = 5, overcast = 7, or rainy = 9) and relative wind velocity (stagnant = 1, occasional light breeze = 3, consistent light wind = 5, or windy = 7) were recorded an average of five times per day. Monthly means were obtained for temperature, cloud cover, and relative wind velocity; a monthly total was obtained for rainfall. An intercorrelated suite of these four abiotic factors was computed with principal component analysis (PCA) using Pearson product-moment correlations with the computer program SYSTAT (Wilkinson 1986). PCA scores for each month were calculated using the first

principle component which accounted for 55% of the total variation among the four variables. Spearman rank correlations were used to measure the effects of these abiotic factors upon detectability. Each abiotic variable was paired with abundance of each species that was present year-round (Table 2)

Table 2. Rarer Species at Toledo with Insufficient Data for Analyses+

GUILD	Months
Species	SONDJFMAMJJA
INSECTIVORES	
Little Nightjar Caprimulgus parvulus	00000040001
Scissor-tailed Nightjar Hydropsalis brasiliana	102000000000
Ashy-tailed Swift Chaetura andrei	00000640000
White-fronted Woodpecker Melanerpes cactorum	. 000020200100
Checkered Woodpecker Picoides mixtus	022240202442
Lineated Woodpecker Dryocopus lineatus	020000022000
Black-bodied Woodpecker Dryocopus schulzi	040020022420
Cream-backed Woodpecker Campephilus leucopogon	020100444052
Scimitar-billed Woodcreeper Drymornis bridgesii	044200002522
Yellow-throated Spinetail Certhiaxis cinnamomea	00000002000
Firewood-Gatherer Anumbius annumbi	00000004000
Rufous Cacholote Pseudoseisura cristata	00000000100
Great Antshrike Taraba major	00000004241
Barred Antshrike Thamnophilus doliatus	002000000442
Variable Antshrike Thamnophilus caerulescens	00000004402
Stripe-backed Antbird Myrmorchilus strigilatus	000040000020
Olive-crowned Crescent-chest Melanopareia maximilliani	00000004000
Pearly-vented Tody-tyrant Hemitriccus margaritaceiventer	000200002454
Greater Wagtail-tyrant Stigmatura budytoides	000400000400
Vermillion Flycatcher Pyrocephalus rubinus	44000044224
Black-crowned Monjita Xolmis coronata	00000000000
Brown-crested Flycatcher Myiarchus tyrannulus	444000000000
Variegated Flycatcher Empidonomus varius	040400000000
Streaked Flycatcher Myiodynastes maculatus	00444440000
	00000002000
Piratic Flycatcher Legatus leucophaius	0002002000
Crested Becard Pachyramphus validus	
Rufous-browed Peppershrike Cyclarhis gujanensis	020000020242
Creamy-bellied Thrush Turdus amaurochalinus	020000004444
House Wren Troglodytes aeodon	046444000220
Creamy-bellied Gnatcatcher Polioptila lactea	04440000000
Southern Martin Progne modesta	40000000000
Gray-breasted Martin Progne chalybea	000100000000
Barn Swallow Hirundo rustica	000020000000
Tropical Parula Parula pitiayumi	00000200202
Troupial Icterus icterus (n=35)	40000002000
HYDROPHILIC SPECIES	
White-tufted Grebe Rollandia rolland	00000032000
Least Grebe Tachybaptus dominicus	200000032000
, ·	000004444024
Pied-billed Grebe <i>Podilymbus podiceps</i> Neotropic Cormorant <i>Phalacrocorax brasilianus</i>	330440100000
•	000240000200
Southern Screamer Chauna torquata	00024000200
White-faced Whistling-duck Dendrocygna viduata	
Masked Duck Oxyura dominica	30000030000
Muscovy Duck Cairina moschata	330442422000
Comb Duck Sarkidiornis melanotos	000044000000
Brazilian Teal Amazonetta brasiliensis	00000440000
Snowy Egret Egretta thula	025000100000

	20010 - (00111111111111111
White-necked Heron Ardea cocoi	000024100010
Striated Heron Butorides striatus	00344040000
Bare-faced Ibis Phimosus infuscatus	00000000010
Roseate Spoonbill Ajaja ajaja	00200000000
Wood Stork Mycteria americana	003214420000
Maguari Stork Ciconia maguari	000012000000
Jabiru Stork Jabiru mycteria	00000000004
Giant Wood-Rail Aramides ypecaha	000020000000
Purple Gallinule Porphyrio martinica	000043400000
Spot-flanked Gallinule Gallinula melanops	000032000300
White-winged Coot Fulica leucoptera	01000000000
Limpkin Aramus guarauna	000022320000
Wattled Jacana Jacana jacana	000014444300
Upland Sandpiper Bartramia longicauda	00100000000
Solitary Sandpiper Tringa solitaria	000002000000
Pectoral Sandpiper Calidris melanotos	554440100002
Ringed Kingfisher Ceryle torquata	000020300000
(n=28)	
AUNIVORES	
Cattle Egret Bubulcus ibis	00000000014
Pearl Kite Gampsonyx swainsonii	000020020010
Mississippi Kite Ictinia mississippiensis	00000002000
Rufous-thighed Hawk Accipiter erythronemius	00000000033
Crane Hawk Geranospiza caerulescens	434404202142
Harris' Hawk Parabuteo uncinctus	000002000004
Black-collared Hawk Busarellus nigricollis	00000002200
Black-chested Buzzard-eagle Geranoaetus melanoleucus	00000000100
Laughing Falcon Herpetotheres cachinnans	002000242454
Greater Ani Crotophaga major	00000020000
Barn Owl Tyto alba	114000000000
Great-horned Owl Bubo virginianus	00000040202
Burrowing Owl Athene cunicularia	20000040202
Plush-crowned Jay Cyanocorax chrysops	000000110050
(n=13)	
GRANIVORES	
Ruddy Ground-dove Columbina talpacoti	205541440000
Hooded Siskin Carduelis magellanica	42000000001
Black-capped Warbling-finch Poospiza melanoleuca	000040004454
Blue-black Grasquit Volatina jacarina	002004400000
Lined Seedeater Sporophila lineola	000244500000
Grayish Saltator Saltator coerulescens	00000400000
(n=6)	
FRUGIVORES	001002000000
Red-eyed Vireo Vireo olivaceus	00000000000
White-lined Tanager Tachyphonus rufus	054422202202
Sayaca Tanager Thraupis sayaca	044220000342
Blue-and-yellow Tanager Thraupis bonariensis	000020000000
Purple-throated Euphonia Euphonia chlorotica (n=5)	00002000000
DETRIVORES	
King Vulture Sarcoramphus papa	00000002141
(n=1)	
NECTARIVORES	
Blue-tufted Starthroat Heliomaster furcifer	000444420000
(n=1)	

⁺Taxonomy follows Hayes 1995. Progne modesta is not included in his list. Asturina nitida and Saltator maximus were tentatively not included in the above list until species designation is further verified.

over time (n=12 months) using STAT-GRAPHICS (STSC 1986). The alpha level was set at 0.02 to control for bias due to Type II error.

SEASONALITY

Monthly abundance ranks were obtained for all species. Species were divided into two groups: abundant species (defined as those species having an abundance rank of 4-6 for at least 6 months - Table 1), and rarer species (all other species - Table 2). Ranks for abundant species in Table 1 (i.e., species with sufficient data for analysis) were subjected to standard deviation (SD) computation using a TI-35X statistical calculator (Texas Instruments 1992) to measure seasonality.

All species were grouped into guilds based upon primary diet (insectivores, faunivores, detrivores, granivores/foliovores, frugivores, and nectarivores) or water dependence (hydrophilic species) from direct field observations supplemented with information from Hilty & Brown 1986, Ffrench 1980, and Terborgh et al. 1990. Means of SDs were obtained for each guild in Table 1 to assess how seasonality is constrained by limiting resources. The higher the mean SD value, the more seasonal variation exhibited by a guild for a particular resource.

Chi-square tests (Sokal & Rohlf 1969) were used to test for significant differences between numbers of guild members in abundant (Table 1) versus rare (Table 2) species. Significant differences would reflect ecological and evolutionary processes (e.g., resource distribution, competition, etc.) that influence species packing mechanisms within guilds, to be entertained in the discussion to follow.

RESULTS

Of the 24 species (16% of the community) represented at Toledo year-round, the only species significantly correlating with abiotic factors were the Guira Cuckoo with cloud cover (r=.737, P=.015), and Goldenbilled Saltator with rainfall (r=-.825,

P=.006) and the abiotic suite of variables (r=.798, P=.008) (Table 3). Because only two species were significantly correlated with three factors, detectability was not strongly biased due to behavioral cues triggered by weather elements.

The avian community at Toledo is comprised of 152 species in 47 families. Number of species belonging to each guild is as follows: 21 insectivores, 20 granivores and foliovores, 14 faunivores, 4 hydrophilic species, 3 detrivores and 1 nectarivore in the abundant species group (Table 1); 35 insectivores, 28 hydrophilic species, 13 faunivores, 6 granivores, 5 frugivores, and 1 each for detrivores and nectarivores in the rare species group (Table 2).

Insectivores show the strongest seasonality (SD = 1.63) followed by hydrophilic species (SD = 1.43), nectarivore (SD = 1.41), faunivores (SD = 1.33), granivores and foliovores (SD = 1.20), and detrivores (SD = 0.50) (Table 1).

Results of Chi-square tests indicated that differences between numbers of abundant versus rare insectivores ($X^2 = 3.25$, P < 0.01), granivores ($X^2 = 8.25$, P < 0.005), and hydrophilic species ($X^2 = 20.15$, P << 0.005) were highly significant. In contrast, analyses were not performed for faunivores, detrivores, and nectarivores due to similar numbers or low sample size.

DISCUSSION

The most diverse families in this study were also the most diverse families at an Argentine Chaco locality. The number of species follow each family name parenthetically for Paraguay (this study) and Argentina (Capurro & Bucher 1988), respectively, as follows: Tyrannidae (17, 24), Emberizidae (13, 18), Accipitridae (13, 12), and Furnariidae (8, 11).

SPECIES CONSUMING INSECTS

Insectivores are the most speciose guild in both abundant (21) and rare (33) species groups, although number of abundant insectivores versus number of abundant grani-

Table 3. Avian Species Present Year-Round at Toledo.

Spotted Tinamou	Savannah Hawk	Narrow-billed Woodcreeper
Greater Rhea	Crested Caracara	Lark-like Brushrunner
Ring Teal	Black-legged Seriema	Cattle Tyrant
Whistling Heron	Picazuro Pigeon	Masked Gnateatcher
Plumbeous Ibis	Picui Ground-dove	Red-crested Cardinal
Buff-necked Ibis	Monk Parakeet	Golden-billed Saltator*
Black Vulture	Blue-fronted Parrot	Bay-winged Cowbird
Turkey Vulture	Guira Cuckoo*	Shiny Cowbird

^{*} Significant correlations with P≤.02 (to control for type II error) were found only with Guira Cuckoo and cloud cover (r=.737, P=.015), and Golden-billed Saltator with rainfall (r= -.825, P=.006) and the abiotic suite of variables (r=.798, p=.008).

vores (20) is virtually indistinguishable.

Insectivore abundance may result from insects being an evenly distributed resource at Toledo (pers. obs.). Despite even distribution, insects are often a thinly distributed resource in Neotropical environments, resulting in increased territoriality and competition among insectivores (e.g. Snow 1976). Such competitive forces can yield more "supertramp" species (superior dispersers, inferior competitors; Diamond 1975) within the community reflected by the significantly higher number of rare species. However, it is possible that "rescue effect" (Brown & Kodric-Brown 1977) occurs temporally with incoming migrants replacing conspecific migrants that are leaving (see discussion below).

These findings are concordant with Karr's (1976) hypothesis that insectivores show the most seasonality of all guilds. Additionally, Avery & Van Riper (1989) attributed an insectivore-dominated community to a spatially broad array of insect distribution within California woodlands, where insects occupy a variety of niches.

SPECIES CONSUMING PLANT PARTS

The number of granivores decreases dramatically from the abundant (20) to rare (6) species groups. Species such as *Ortalis* consume more foliage than seed parts (e.g., Caziani & Protomastro 1994), but such foliovores comprise a small subset of the abundant species group.

The high number of abundant granivorous species that co-occur compared to the low number of rare species may be a consequence of plant parts not being a spatially predictable resource, permitting higher levels of coexistent with minimal competition. It is not beneficial for birds to defend territories if the food plants may not bloom within that territory. Rather, it is beneficial for species to share resource clumps, synchronously or asynchronously.

The results herein are concordant with the findings of other studies in the Argentine Chaco (Capurro & Bucher 1982), Monte (Marone 1992) and Venezuelan xeriscape (Poulin et al. 1993) where a positive relationship exists between density of granivores and seeds. Moreover, Capurro & Bucher (1982) found no correlation between diversity of granivores and seeds in the Argentine Chaco, in contrast to the correlation between diversity of insectivores and insects, suggesting considerable dietary overlap among sympatric granivores.

FRUGIVORES

The unpredictable blooming strategy of fruit attributes to the low number of frugivorous species (5) included in the rare species group (none present in the abundant species group). Similarly, Poulin et al. (1993) speculated that a temporally patchy presence of fruit attributes to most frugivores being transients.

NECTARIVORES

A similar situation is revealed by the low numbers of nectarivores (1 species abundant, 1 rare). Hummingbirds specialize on reproductive plant parts that are not temporally predictable, attributing to the low diversity at Toledo (N=2 species). Hummingbirds increase during the rainy season when nectary sources increase at different sites in the Neotropics (e.g., Toledo & Venezuelan Mangroves, Lefebvre et al. 1994),.

WATER-DEPENDENT SPECIES

Hydrophilic species are significantly more speciose in the rare species group (28 species) than the abundant group (4 species), attributable to the stochastic and xeric nature of the Chaco. Permanent water is a spatio-temporally unpredictable resource at Toledo, with only one tajamar containing water throughout the year. Nonetheless this tajamar would reach a depth of < 1 m during the drier periods versus > 4 m during extensive showers in the rainy season. Toledo is located virtually in the center of the Chaco, which is centered in the continent, and is surrounded by several major aquatic systems: the Pilcomayo River to the southwest, the Paraguay River to the east, and the vast Pantanal wetland to the north. Numerous aquatic species may stop-over briefly at a tajamar or other "staging area" (Myers 1983) in transit from one region to the next, reflecting the high number of rare species versus abundant species.

Hayes & Fox (1991) suggest that the evolution of migration for certain hydrophilic species (e.g., shorebirds) is influenced by seasonal precipitation cycles and the effects on habitat availability.

SPECIES CONSUMING MEAT

Faunivores represent a guild with relatively little variation between abundant (14) and rare (13) species. Hayes (1991) found that raptor abundance is most likely influenced by availability of preferred prey and foraging strategy. Raptors are important keystone species as they have a strong influence on prey populations (Robinson 1994). Detrivores showed less than 1/3 the SD as that of the most seasonal group (insectivores), attributable to a constant supply of road-killed carcasses.

FINAL COMMENTS

Resource tracking plays a vital role in shaping the community, through resource "explosions" (e.g., fruit) and seasonal changes that affect resource abundance (e.g., water) in one area, forcing the consumer to move to another. Year-to-year variation in food availability may have a significant impact on species abundance (Karr 1976). Although data were collected for a continuous year, it is possible that at least some of the species in this study are typically more, or less, abundant than during this particular year of data collection.

Birds exhibiting seasonality in one region may occur year-round or during different parts of the year in other regions. Moreover, northern austral migrants can be replaced by incoming conspecific southern austral migrants and vice-versa in certain cases where South American species have extensive latitudinal ranges. In such instances it is more difficult to detect idiosyncrasies of seasonality at the local level. Nonetheless the importance of documenting seasonality at specific sites can not be overemphasized because birds may occur year-round when including samples from several different sites as a data set.

Habitat may play an important role in determining which guild is the most diverse in a community. For example, in a Costa Rican tropical, mesic forest insectivores were the most speciose guild in the understory, whereas frugivores dominated the canopy (Loiselle 1988).

ACKNOWLEDGMENTS

The companionship of numerous individuals in Paraguay, including Eddie and Sonja Mueller, the Unger family, Chris Yahnke, Mamila Gammarra de Fox, Flavio Colmán, Chaco Solar caballeros (Eduardo and Carlo), and some of the local Mennonites is hardly forgotten. Thanks to my family for mutually supporting my interest. I am grateful to K. Kleypas for computing SD values. Constructive comments on this manuscript, or previous versions of this manuscript were provided by T.

Chesser, F. Hayes, S. Mayes, and an anonymous reviewer. Financial support was provided by Dr. Kurt Benirschke and the Foundation for Endangered Animals. Local logistics were provided by the Zoological Society of San Diego through support of Proyecto Taguá.

LITERATURE CITED

- AVERY, M. L. AND C. VAN RIPER III. 1989. Seasonal changes in bird communities of the Chaparral and Blue-Oak Woodlands in central California. Condor 91: 288-295.
- BENIRSCHKE, K.; M. L. BYRD AND R. J. Lowe. 1989. The Chaco region of Paraguay: peccaries and mennonites. Interdisc. Sci. Rev. 14: 144-147.
- BROOKS, D. M. 1991. Some notes on the ciconiiformes in the Paraguayan Chaco. IUCN/IWRB Ciconiiformes Spec. Grp. 4: 4-5.
- BROOKS, D. M. 1995. Ecological partitioning between Seriema species in the Paraguayan Chaco, with comments on *Chunga* biology. *In:* Proc. V Neotrop. Ornithol. Congr. (N. López, Ed.), Asunción, Paraguay.
- Brooks, D. M. 1997. Population and ecological parameters of the Chaco chachalaca (*Ortalis canicollis*). *In:* Biology and Conservation of the Family Cracidae (S. Strahl, D.M. Brooks, A. Begazo, G. Sedaghatki and F. Olmos, Eds.)
- Brown, J. H. AND A. KODRIC-BROWN. 1977. Turnover rates in insular biogeography: effect of immigration on extinction. Ecol. 58: 445-449.
- CAPURRO, H. A. Y E. H. BUCHER. 1982. Poblaciones de aves granívoras y disponibilidad de semillas en el bosque Chaqueño de Chamical. Ecosur 9: 117-131.
- CAPURRO, H. A. Y E. H. BUCHER. 1988. Lista comentada de las aves del bosque Chaqueño de Joaquín V. González, Salta, Argentina. Hornero 13: 39-46.
- CAZIANI, S. AND J. PROTOMASTRO. 1994. Diet of the Chaco chachalaca. Wils. Bull. 106: 640-648.
- Contreras, A. O. y D. Mandelburger. 1985. Aportes para la ornitología del Paraguay. I. La avifauna de Pozo Colorado, Departamento Presidente Hayes, Chaco Boreal. Hist. Nat. 5: 334-336.
- Contreras, J. R. y N. González Romero. 1989. Algunas observaciones acerca de la presencia y abundancia de rapaces (Accipitridae y Falconidae) en una transecta a través del Chaco Boreal, Paraguay. Nótul. Faunist. 20: 1-4.
- DIAMOND, J. M. 1975. Assembly of species communities. Pp. 342-444 In: Ecology and Evolution of Communities (M.L. Cody and J.M. Diamond, Eds.). Harvard Univ. Press, Cambridge.
- DUNNING, J. S. 1987. South American birds: a photographic aid to identification. Harrowood Books, Pennsylvania, USA.
- FFRENCH, R. 1980. A Guide to the Birds of Trinidad and Tobago. Harrowood Books, Pa., USA
- González-Romero, N. y J. Contreras. 1989. Observaciones ornitológicas en Chaco Boreal, Paraguay. Inf. Cient. Inst. Ciencias. Básicas, Asunción 6: 4-9.

- HAYES, F. E. 1991. Raptor densities along the Paraguay River: seasonal, geographical and time of day variation. J. Raptor Res. 25: 101-108.
- HAYES, F. E. 1995. Status, Distribution, and Biogeography of the Birds of Paraguay. ABA Monogr. Field Ornithol Ner.: 1. Colorado Springs, USA.
- HAYES, F. E. & J. A. Fox. 1991. Seasonality, habitat use, and flock sizes of shorebirds at the Bahia de Asuncion, Paraguay. Wils. Bull. 103: 637-649.
- HAYES, F. E., S. M. GOODMAN, & N. E. LÓPEZ. 1990. New or noteworthy bird records from the Matogrosense region of Paraguay. Bull. Brit. Ornithol. Club 110: 94-103.
- HAYES, F. E.; P. A. SCHARF & H. LOFTIN. 1991. A Birder's Field Checklist to the Birds of Paraguay. Russ' Natural History Books, Lake Helen, Florida.
- HILTY, S. L. & W. L. Brown. 1986. A Guide to the Birds of Colombia. Princeton Univ. Press, NJ, USA.
- Karr, J. R. 1976. Seasonality, resource availability, and community diversity in tropical bird communities. Am. Nat. 110: 973-995.
- KLOPFER, P. H. 1959. Environmental determinants of faunal diversity. Am. Nat. 93:337-343.
- LEFEBURE, G.; G. POULIN & R. McNEIL. 1994. Temporal dynamics of mangrove bird communities in Venezuela, with special reference to migrant warblers. Auk 111: 405-415.
- Loiselle, B. A. 1988. Bird abundance and seasonality in a Costa Rican lowland forest canopy. Condor 90: 761-772.
- LÓPEZ, J.; E. L. LITTLE, JR.; J. S. ROMBOLD & W. J. HAHN. 1987. Arboles comunes del Paraguay. Peace Corps, Washington, D.C.
- MARONE, L. 1992. Seasonal and year-to-year fluctuations of bird populations and guilds in the Monte Desert, Argentina. J. Field. Ornithol. 63: 294-308.
- MEYER DE SCHAUENSEE, R. 1982. A guide to the birds of South America. Acad. of Nat. Sci., Philadelphia.
- Myers, J. P. 1983. Conservation of migrating shorebirds: staging areas, geographic bottlenecks, and regional movements. Am. Birds 37: 23-25.
- NAROSKY, T. & D. YZURIETA. 1987. Guía para la identificación de las aves de Argentina y Uruguay. Vázquez Mazzini, Buenos Aires.
- Neris, N. & F. Colmán. 1991. Observaciones de aves en los alrededores de Colonia Neuland, Departamento Boquerón, Paraguay. Bol. Mus. Nac. Hist. Nat. Paraguay 10: 1-10.
- PERIS, S. J. 1990. Peso y biometría de algunas aves del Chaco húmedo (Presidente Hayes, Paraguay). Ornitol. Neotr. 1: 31-32.
- PERIS, S.; L. A. CABELLO; F. SUAREZ & B. PECO. 1987. Las aves del bajo Chaco: evaluación preliminar. Inf. Cient. Inst. Cs. Bás., Asunción 5: 27-33.
- POULIN, B.; G. LEFEBVRE & R. McNeil. 1993. Variations in bird abundance in tropical arid and semi-arid habitats. Ibis 135: 432-441.
- ROBBINS, C. S. 1981. Bird activity levels related to weather. Stud. Avian Biol. 6: 301-310.
- ROBINSON, S. K. 1994. Habitat selection and foraging ecology of raptors in Amazonian Peru. Biotrop. 26: 443-458.
- Short, L. L. 1975. A zoogeographic analysis of the South America Chaco avifauna. Bull. Am. Mus. Nat. Hist.,

- Nº. 154: 167-352.
- SHORT, L. L. 1976. Notes on a collection of birds from the Paraguayan Chaco. Amer. Mus. Novit. 2597: 1-16.
- SHORT, L. L. 1980. Chaco woodland birds of South America-some African comparisons. Pp. 147-158 In: Proc. IV Pan-African Ornith. Cong. (D.N. Johnson, Ed.). S. Af. Orn. Soc.
- Snow, D. W. 1976. The Web of Adaptation: bird studies in the American tropics. Quadrangle, Times Book Co., NY., USA.
- SOKAL, R. R. & F. J. ROHLF. 1969. Biometry. W.H. Freeman and Co., San Francisco.
- STABLER, D. E. 1985. Pflanzen in Paraguay. Zamphirop-

- olos S.A., Asunción. STSC. 1986.
- STATGRAPHICS USERS GUIDE. STSC, Inc., Rockville, Md.,
- Terborgh, J. S. K. Robinson, T. A. Parker III, C. A. Munn & N. Pierpont. 1990. Structure and Organization of an Amazonian forest bird community. Ecol. Monogr. 60: 213-238.
- TEXAS INSTRUMENTS. 1992. TI-35X Scientific Calculator User's Guide. Lubbock, Tx., USA.
- Wiens, J. A. 1989. The ecology of bird communities: Vol. 1 foundations and patterns. Cambridge Univ. Press.
- WILKINSON, L. 1986. SYSTAT: the system for statistics. SYSTAT Inc., Evanston, II., USA.