ENSAMBLES DE AVES DE LOS BAÑADOS DE CARILAUQUEN (LAGUNA LLANCANELO, MENDOZA, ARGENTINA): CONSIDERACIONES PARA SU CONSERVACIÓN

PEDRO G. BLENDINGER 1,2 Y M. EVA ALVAREZ 1

¹ Unidad Zoología y Ecología Animal, IADIZA. CC 507, 5500 Mendoza, Argentina
² Dirección actual: Department of Biology, University of Missouri-St. Louis. 8001 Natural Bridge Road,
St. Louis, Missouri 63121, EEUU. blendingerp@msx.umsl.edu

RESUMEN.— Analizamos los cambios estacionales en la riqueza, composición, abundancia y uso de hábitat de las especies de aves de los ambientes acuáticos y terrestres del sistema de bañados de Carilauguen. Identificamos cinco hábitats de importancia para las aves: el bañado, las playas y aguas costeras de la laguna, el salitral costero, el pichanal y el matorral arbustivo. Registramos 100 especies distribuidas en forma heterogénea en el mosaico ambiental; cada hábitat aportó especies exclusivas al conjunto total de especies. La similitud entre hábitats fue baja; la mayoría de las especies ocuparon solo uno o dos hábitats. La abundancia y riqueza de especies fueron mayores en primavera y verano, lo que coincide con la estación reproductiva de la mayoría de las especies. Varias especies endémicas de zonas áridas y semiáridas de Argentina nidifican en los ambientes terrestres de Carilauquen. Analizamos el valor para la conservación de los cinco tipos de hábitat considerando el uso de hábitat, la exclusividad taxonómica y la distribución de las especies de cada ensamble. El bañado es el hábitat prioritario para el mantenimiento de la diversidad de aves de Carilauquen, ya que alberga muchas especies con distribuciones particulares y con marcadas preferencias de hábitat. El matorral arbustivo, pese a su menor riqueza, también posee interés especial por la composición del ensamble. Una estrategia de conservación efectiva debe contemplar la complementariedad de ambos tipos de hábitat para la conservación regional de la avifauna.

PALABRAS CLAVE: abundancia de aves, desierto del Monte, humedales, Laguna Llancanelo, riqueza de especies, uso de hábitat, valor de conservación.

ABSTRACT. BIRD ASSEMBLAGES FROM CARILAUQUEN MARSHES (LLANCANELO LAGOON, MENDOZA, ARGENTINA): CONSIDERATIONS FOR THEIR CONSERVATION.— We analyzed seasonal changes in species richness, composition, abundance and habitat use of birds in wetlands and terrestrial environments from the Carilauquen marsh system. We identified five important habitats for birds: marsh, coast of the lagoon, coastal salt-land, pichanal and shrubland. During the study we recorded 100 bird species that showed a heterogeneous distribution on the environmental mosaic; each habitat contributed with exclusive species to the overall species pool. The Carilauquen marsh system showed low between-habitat similarity; most of the bird species used only one or two habitats. Bird abundance and species richness were higher during spring and summer, likely due to the nest season of most of the species. Several endemic species of arid lands from Argentina nested in the terrestrial environments of Carilauquen. We analyzed the conservation value of the five habitats considering habitat preferences, distribution and taxonomic exclusivity of each birdspecies assemblage. The conservation of the marsh guarantees the maintenance of high bird diversity, because this habitat harbours many species with restricted ranges and with narrow habitat preferences. The shrubland, in despite of its lower species richness in comparison to wetlands, is a habitat of special interest for bird conservation due to the species composition of the assemblage. An effective conservation strategy has to consider the complementarity of both habitats for the conservation of the regional avifauna.

KEY WORDS: bird abundance, conservation value, habitat use, Llancanelo Lagoon, Monte desert, species richness, wetlands.

Recibido 1 julio 2002, aceptado 25 diciembre 2002

En las zonas áridas las condiciones climáticas extremas, con amplios rangos de temperatura

diarios y estacionales sumados a la escasez y al carácter impredecible de las precipitaciones,

son limitaciones importantes para la vida (Noy-Meir 1973, Evenari et al. 1986). Los ensambles de aves de estos ambientes se caracterizan por su baja riqueza de especies y por poseer una menor densidad de organismos en comparación con otros ambientes (Maclean 1974, Schodde 1982, Wiens 1991, Stotz et al. 1996, van Heezik y Seddon 1999). A su vez, como el agua es un importante factor limitante en las zonas áridas, en los humedales temporarios y permanentes se congregan gran cantidad de organismos que dependen de las condiciones allí presentes, transformándose en polos de abundancia y riqueza de especies en una matriz ambiental de menor diversidad (Schodde 1982, Kotler et al. 1998).

En el desierto del Monte del oeste de Argentina la topografía y el régimen de precipitaciones determinan dos sectores con marcadas diferencias en la estructura y composición de la vegetación (Morello 1958): el Monte Septentrional, aproximadamente al norte del paralelo 37°S, y el Monte Austral. Mientras que en varias localidades del Monte Septentrional se estudió la composición o la estructura de ensambles de aves terrestres (Marone 1991, 1992a, 1992b, Marone et al. 1997, Blendinger y Ojeda 2001, Gonnet 2001, PG Blendinger, datos no publicados), muy poco se conoce sobre la avifauna del sector austral y de la zona de transición entre ambos sectores.

El conocimiento actual sobre la avifauna de los ambientes acuáticos del Monte proviene mayormente de la laguna de Llancanelo (Sosa 1995, Martínez et al. 1997), situada en la zona de transición entre el Monte Septentrional y el Monte Austral. Esta laguna y los bañados que la circundan constituyen el principal humedal natural en el desierto del Monte. Allí habita un gran número de especies, algunas de las cuales se concentran en números enormes, lo que ha llevado a que se la declare Reserva Provincial y, posteriormente, Sitio Ramsar para la Conservación de los Humedales (Canevari et al. 1998). En la laguna se registraron hasta 150000 aves acuáticas y 74 especies de aves en el verano, con 24 especies que nidifican regularmente. Constituye además un importante sitio de invernada para limícolas migratorias (Sosa 1995). A pesar de su importancia estratégica para la conservación, los organismos de gestión no cuentan actualmente con elementos de juicio que permitan orientar objetivamente las decisiones para el manejo del área.

Durante un año realizamos un inventario de las especies presentes en los bañados de Carilauquen, uno de los humedales que vierten sus aguas en la laguna de Llancanelo, y en los ambientes terrestres próximos al bañado. Analizamos (1) la abundancia y los patrones de uso de hábitat de las especies más frecuentes, (2) las variaciones estacionales en la riqueza, abundancia y composición de especies, y (3) el valor para la conservación de los principales hábitats identificados, utilizando diferentes aproximaciones del uso de aves como indicadores ecológicos (Daniels et al. 1991, Stotz et al. 1996). A partir de esta información realizamos recomendaciones acerca de las prioridades para la conservación del área en términos de su importancia para la avifauna. El trabajo forma parte de los estudios de base del área donde la compañía petrolera Repsol-YPF pretende reactivar la explotación del yacimiento Llancanelo.

Métodos

Área de estudio

La laguna de Llancanelo (35°45'S, 69°08'O) se encuentra en la provincia de Mendoza, departamento Malargüe, en el centro-oeste de la República Argentina. Abarca unas 65000 ha, con 120 km perimetrales de costa y ambientes acuáticos circundantes, principalmente bañados y pajonales inundables. La laguna de Llancanelo es un humedal salino, ubicado en una cuenca endorreica en un ambiente semidesértico al pie de la cordillera de los Andes, a 1300 msnm (Iglesias y Pérez 1998). La mayor parte de la vegetación en la cuenca de Llancanelo es xerófila o halófila; las distintas asociaciones vegetales están determinadas principalmente por las condiciones edáficas (Méndez 1997).

El área específica de muestreo se encuentra en las márgenes centro-oeste de la laguna, y abarca los bañados de Carilauquen y el sector costero de la laguna de Llancanelo comprendido entre la proyección del Volcán Trapal y la desembocadura de los bañados de Carapacho, así como los ambientes terrestres circundantes. Esta área está parcialmente incluida en la Reserva Provincial Laguna de Llancanelo y en el Sitio Ramsar Laguna de Llancanelo.

Diseño de muestreo

Consideramos cinco tipos de hábitat de acuerdo a su potencial importancia para las aves.

- (1) Bañado. Incluye al arroyo Carilauquen y a los bañados asociados. El agua del arroyo proviene de napas subterráneas que afloran a unos 10 km de su desembocadura en la laguna. El suelo es limo-arcilloso, las comunidades vegetales son típicamente higrófilas, con predominio de *Juncus balticus, Scirpus cinereus y Cortaderia selloana* entre las especies emergentes. En este hábitat incluimos a los bordes de los bañados, definidos como una franja de ancho variable a los lados de los bañados, caracterizados por la presencia de pajonales de *Cortaderia selloana* o de matorrales muy densos de *Baccharis spatioides*.
- (2) Salitral costero. Es una franja contigua a la laguna donde predominan suelos salinos con vegetación escasa y dispersa que brindan muy baja cobertura. Está representada principalmente por *Sarcocornia ambigua* y *Frankenia juniperoides*.
- (3) Pichanal. Comprende los complejos de vegetación halófila de los terrenos llanos que cubren la mayor parte del área de estudio (Méndez 1997). Está representado por vegetación arbustiva baja con pichana (Baccharis spatioides) como elemento característico. En las áreas más salinas tiende a desaparecer la pichana, predominando Atriplex boecherii, Distichlis sp., Frankenia juniperoides, Heterostachys ritteriana y Sarcocornia ambigua. Durante el invierno se suelen anegar las zonas más deprimidas; en estos casos observamos especies de aves típicamente asociadas a ambientes acuáticos como patos, teros reales (Himantopus melanurus) y becasinas comunes (Gallinago paraguaiae), que no se incluyeron en los análisis del pichanal.
- (4) Matorral arbustivo. El matorral arbustivo, caracterizado por arbustos de mayor altura, se desarrolla en las tierras más altas, de pendientes suaves, con suelo arenoso o pedregoso de origen volcánico. Predominan jarillas (Larrea divaricata y Larrea nitida), chirriadera (Chuquiraga erinacea), solupe negro (Neosparton aphyllum), zampa (Atriplex lampa) y monte negro (Bouganvillea spinosa).
- (5) Playas y aguas costeras. Aguas someras de la laguna y costa lodosa del borde de la laguna, con suelos arcillosos inundables.

Realizamos tres campañas, una al final de la primavera (diciembre de 2000), otra a fines de verano (marzo de 2001) y la tercera en invierno (agosto de 2001). Para obtener información cualitativa y cuantitativa sobre la abundancia y el uso de los hábitats, usamos transectas de 500 m de largo y de ancho variable, las que se recorrieron una vez por campaña. En cada transecta consideramos dos franjas de diferente ancho, una de 30 m y otra de 50 m a ambos lados del observador, de modo de poder ajustar los valores de abundancia según la detectabilidad de las especies (Ralph y Scott 1981, Ralph et al. 1993). En cada campaña relevamos 10 transectas por hábitat excepto en playas y aguas costeras. En este caso, relevamos una transecta de distancia ilimitada sobre aproximadamente 10 km a lo largo de la línea de costa, contando todas las aves observadas en las playas barrosas y en las aguas someras. Para las transectas de ancho variable empleamos binoculares 10×50, y en la transecta del borde de la laguna un telescopio 20×50. Finalmente, registramos todas las especies vistas u oídas en cada hábitat, independientemente de su presencia en los muestreos sistemáticos. En la sistemática y el ordenamiento taxonómico seguimos a Sibley y Monroe (1990, 1993).

Exploramos gráficamente la relación entre hábitats basada en la composición de los ensambles con Análisis de Agrupamiento (UPGMA) basados en el índice de similitud cualitativo de Jaccard y en el índice cuantitativo de similitud de Morisita presentes en el programa MVSP (MultiVariate Statistical Package). Los índices cualitativos se calcularon sobre una matriz de presencia—ausencia de las especies de aves registradas en las transectas, mientras que para calcular los índices cuantitativos empleamos los datos de abundancia de aves en las transectas.

Valor de conservación

Para asignar valores de conservación a los principales hábitats consideramos, por un lado, aproximaciones tradicionales en biología de la conservación, como la riqueza de especies y los índices de diversidad y similitud. Por otro lado, calculamos índices de acuerdo a un proceso en dos etapas. Primero le asignamos valores a cada especie de ave según su distribución geográfica en diferentes escalas espaciales y según su grado de exclusividad taxonómica (Daniels et al. 1991). En una se-

Tabla 1. Distribución y abundancia (individuos/km²) de las especies de aves observadas en Carilauquen en cinco tipos de hábitat durante tres estaciones del año. P: primavera, V: verano, I: invierno, x: especie observada fuera de los muestreos sistemáticos en transectas.

		layas as cos	y teras	I	Bañad	lo	Pi	ichan	ıal		Salitra costero		Matorra arbustiv		
	P	V	I	P	V	I	P	V	I	P	V	I	P	V	I
Pterocnemia pennata							X								
Eudromia elegans							X	X	X				4.0	2.0	4.0
Nothura darwinii								X							
Oxyura vittata				X	X	2.0									
Coscoroba coscoroba	х	X	X	2.0	2.0	32.0									
Cygnus melanocorypha	X	X	X	X	x	4.0									
Chloephaga picta				х	х	x			х			х			
Heteronetta atricapilla				Х											
Anas specularioides		х													
Anas sibilatrix	х	х		х	х	12.0									
Anas georgica	x	X		6.2	20.0	48.0									
Anas flavirostris	X	X	х	10.0		140.0									
Anas platalea	x	,,	,	2.0	X	X									
Anas cyanoptera	^			4.0	Α	4.0									
Anas bahamensis	х			1.0		1.0									
Netta peposaca	^			v											
Speotyto cunicularia				X											
							X	X	Х					4.0	
Caprimulgus longirostris								X						4.0	
Columba livia ^a															
Zenaida auriculata				(0	16.0								X	X	
Pardirallus sanguinolentus				6.0	16.0	X									
Fulica armillata	X			50.0	22.0										
Fulica leucoptera				X	16.0	X									
Fulica rufifrons	X			16.7	10.0	76.7									
Tringa melanoleuca				2.0	4.0	2.0									
Tringa flavipes					X										
Calidris alba	X														
Calidris bairdii	X	X								46.7	194.0				
Calidris fuscicollis	X														
Gallinago paraguaiae				6.7	73.3	23.3									
Steganopus tricolor	Х														
Rostratula semicollaris				X											
Himantopus melanurus				4.0	X	18.0									
Vanellus chilensis	X	X	X	63.3	43.3	63.3		X		8.9					
Charadrius falklandicus	х	X	X							6.7		X			
Charadrius collaris	х				х										
Charadrius modestus						x									
Oreopholus ruficollis						x		х	х						
Larus maculipennis			х	X		14.0									
Sterna nilotica	х	х		х						4.4					
Sterna trudeaui	х	х		2.0											
Circus cinereus				x		х	х	х	x	х			х	х	
Buteo polyosoma				^		^	X	X	4.0	^	х		^	^	х
Geranoaetus melanoleucus							Λ.	Α.	1.0		Λ.		х		X
Rostrhamus sociabilis					4.0			2.0					^		^
Caracara plancus				4.0	2.0	2.0	х		v	v		2.0			
•	•			26.7	6.7	13.3	2.0	X	x 6.0	x 6.7	4.0	4.0	2.0	*/	10.
Milvago chimango	Х	X	X	∠0./	0.7	13.3	⊿.∪	X		0./	4.0	4.0	⊿.0	x 2.0	10.
Falco sparverius								X	Х					⊿.∪	
Falco femoralis								Х							

^a Especies observadas únicamente en puestos y árboles exóticos.

Tabla 1. Continuación.

		layas ıs cos		s I	3añad	0	Pi	ichan	al		Salitra coster			latori busti	
	P	V	I	P	V	I	P	V	I	P	V	I	P	V	I
Podiceps major	х	х	x	х	х	2.0									
Podilymbus podiceps					X	2.0									
Rollandia rolland				4.0	4.0	8.0									
Phalacrocorax brasilianus			X		X	X									
Ardea cocoi			X			X									
Ardea alba					X	6.0									
Butorides striatus					2.0										
Nycticorax nycticorax				X	4.0										
Phoenicopterus chilensis	X	X	X	X	X	X									
Plegadis chihi		X			14.0	10.0									
Theristicus melanopis				4.0	X			X		4.4					
Coragyps atratus								X	X						
Cathartes aura				x			X	X		X	X	X		X	
Vultur gryphus														X	
Ciconia maguari			X	X	6.0	X									
Elaenia albiceps											2.0				
Anairetes flavirostris														X	
Tachuris rubrigastra				30.0	30.0										
Xolmis rubetra				2.0			4.0	X		6.7			4.0	X	
Agriornis murina													4.0		
Agriornis microptera									X						
Lessonia rufa		X			14.0						20.0				
Hymenops perspicillata				280.0			18.0	6.0							
Geositta cunicularia		X			2.0		8.0	X		18.5	36.7				
Upucerthia certhioides													2.0		
Cinclodes patagonicus						X									
Leptasthenura aegithaloides								X					4.0	18.0	
Asthenes patagonica									X				4.0	20.0	10.0
Asthenes pyrrholeuca						2.0	2.0	X	X			2.0	X	4.0	X
Phleocryptes melanops				186.6	166.7	10.0									
Pseudoseisura gutturalis							X	X					4.0	X	12.0
Teledromas fuscus														2.0	
Turdus chiguanco ^a													22.2	10.0	. .
Mimus patagonicus							Х	X						10.0	6.7
Mimus triurus					20.0	100							Х		
Cistothorus platensis				6.7	20.0	10.0									
Troglodytes aedon				400.0	6.0										
Hirundo rustica				103.3		2.0						2.0			2.0
Tachycineta leucorrhoa ^b				10.0	4.0	2.0						2.0			2.0
Notiochelidon cyanoleuca				12.0	4.0	X		X	Х	X					Х
Anthus lutescens				06.5	5 0.0		20.0	20.0		15 (X				
Anthus correndera	X			96.7	50.0			30.0		15.6					
Anthus hellmayri				14.0			8.0				2.0		04.0	16.0	
Zonotrichia capensis							8.0							16.0	X
Diuca diuca														14.0	X
Phrygilus carbonarius													4.0		
Phrygilus fruticeti				_									8.0	Х	
Sicalis luteiventris				X 4.0	4.0	140	4.0		0.0						
Sturnella loyca				4.0	4.0	14.0	4.0	Х	8.0						
				443.3	100.0	13.3									
Agelaius thilius Molothrus bonariensis ^a				423.3	160.0	13.3									

^a Especies observadas únicamente en puestos y árboles exóticos. ^b Subespecie *Tachycineta leucorrhoa leucopyga*.

gunda etapa, sintetizamos dicha información para asignarle valores a cada unidad espacial (Daniels et al. 1991). Este método permite obtener para cada hábitat una serie de valores de conservación basados en diferentes criterios. El criterio implícito de categorización es que cuanto mayor es un determinado valor de conservación, más valioso es ese hábitat. Así obtuvimos para cada hábitat una serie de valores de conservación basados en diferentes criterios, según si fueran considerados (1) los valores de conservación totales de cada ensamble de aves, (2) los valores promedio (por especie), (3) la diversidad de especies, (4) la riqueza de especies, (5) la similitud de las asociaciones, y (6) una consideración conjunta de los diferentes criterios. En los análisis a escala local empleamos nuestros registros sobre uso de hábitat, mientras que para escalas espaciales mayores usamos las bases de datos en Stotz et al. (1996) y Sibley y Monroe (1990). Para Argentina, superpusimos las distribuciones de las especies sobre las ecoregiones definidas por Gómez et al. (1997).

Medimos la diversidad de aves por hábitat con el índice de Simpson ($D = 1 - \sum p_i^2$) aplicado a los datos de abundancia. Para cada especie calculamos: un índice de exclusividad taxonómica, como $I_t = 1/a$, donde a es el número de especies conocidas del género; un índice de uso de hábitats, como $I_{k} = (N - a)/(N - 1)$, donde N es el número de hábitats considerados y a es el número de hábitats en los cuales se observó a la especie; un índice de distribución en ecoregiones, como $I_{a} = (N - a)/(N - 1)$, donde N es el número de ecoregiones de Argentina y a es el número de ecoregiones ocupadas por la especie; y un índice de distribución en el Neotrópico, como $I_N = (N - a)/$ (N-1), donde N es la cantidad de regiones ornitogeográficas definidas en Stotz et al. (1996) y a es el número de regiones ocupadas por la especie de ave. Los valores absolutos de los índices representan la sumatoria de todos los valores individuales de las especies presentes en cada hábitat; por ende, son sensibles al número de especies y tienden a estar correlacionados. Alternativamente, calculamos los valores promedio de cada dimensión por hábitat, dividiendo el valor absoluto de dicha dimensión de conservación por el número de especies registradas para el hábitat.

Adicionalmente, para reducir los múltiples criterios de conservación generados, ordena-

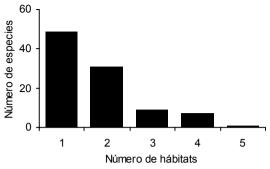


Figura 1. Distribución de frecuencia de ocupación de hábitats por parte de las especies de aves de Carilauquen.

mos los valores obtenidos para cada índice de menor a mayor y le adjudicamos un valor de 1 a 5 a cada hábitat, otorgándole un 5 al máximo valor de conservación. Posteriormente, sumamos los rangos para cada hábitat.

RESULTADOS

Distribución por hábitat

En toda el área relevada registramos un total de 100 especies de aves (Tabla 1), pertenecientes a 28 familias y 8 órdenes. La mitad de las especies registradas son residentes permanentes en el área, solo 6 especies son migrantes invernales y a 43 especies las detectamos únicamente en primavera y verano (Tabla 1). Este último conjunto de especies está integrado mayoritariamente por verdaderos visitantes estivales que nidifican en el área y se desplazan hacia el norte durante el invierno, pero también incluye a especies localmente raras aunque seguramente residentes permanentes que no fueron detectadas en invierno debido a sus bajas densidades poblacionales (e.g., Nothura darwinii, Teledromas fuscus) y a un conjunto de especies migratorias que solo se encuentran presentes durante su paso entre las áreas de invernada y de nidificación (e.g., Anairetes flavirostris, Calidris fuscicollis, Elaenia albiceps y Lessonia rufa).

Al considerar todos los registros de aves por hábitat, incluyendo las observaciones realizadas fuera de las transectas, el esfuerzo de muestreo entre hábitats no fue uniforme. Sin embargo, esta aproximación permite complementar los datos cuantitativos de uso de hábitat y brinda una visión más completa del uso del espacio por las especies de aves. Registramos un mayor número de especies (61) en

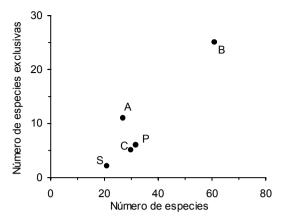
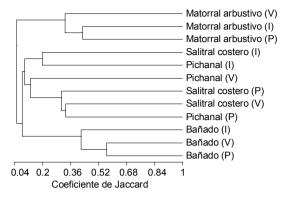



Figura 2. Relación entre el número de especies y el número de especies exclusivas para cada tipo de hábitat en Carilauquen. A: matorral arbustivo, B: bañado, C: playas y aguas costeras de la laguna, P: pichanal, S: salitral costero.

los bañados, mientras que el salitral costero resultó el hábitat menos diverso con solo 21 especies. El número de especies fue similar entre los otros tres ambientes: 32 especies en el pichanal, 30 en las playas y aguas costeras de la laguna y 27 en el matorral arbustivo. Si no consideramos a las tres especies observadas únicamente en puestos y arboledas exóticas (Columba livia, Turdus chiguanco y Molothrus bonariensis), el 82% de las especies usó solo uno o dos hábitats (Fig. 1), mientras que una única especie (Milvago chimango) utilizó los cinco hábitats analizados.

Hubo solo 2 especies de aves exclusivas del salitral costero, 5 exclusivas de las playas y aguas costeras de la laguna, 6 del pichanal, 11 observadas solo en el matorral arbustivo y 25 especies registradas únicamente en el bañado (Tabla 1). El número de especies de cada hábitat y el número de especies exclusivas de los mismos estuvieron relacionados positivamente (r = 0.94, n = 5, P = 0.019; Fig. 2). Comparativamente, el matorral arbustivo posee pocas especies pero presenta un número proporcionalmente elevado de especies exclusi-

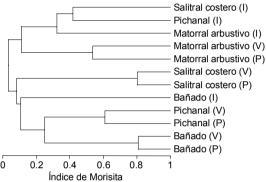


Figura 3. Análisis de Agrupamiento de cinco tipos de hábitat en tres estaciones del año, basados en la presencia–ausencia (arriba) y en la abundancia (abajo) de especies de aves en Carilauquen. I: invierno, P: primavera, V: verano.

vas. La peculiaridad del matorral arbustivo también se manifiesta en el análisis cualitativo de similitud entre hábitats efectuado sobre la matriz de presencia y ausencia de especies observadas en las transectas (Fig. 3). En términos generales, se observó un bajo nivel de similitud debido a las diferencias en la composición de los ensambles de aves de los distintos hábitats. Los tres muestreos estacionales de bañado se agrupan entre sí y se diferencian claramente del resto. De los tres hábitats terrestres, solo el matorral arbustivo se dife-

Tabla 2. Diferencias en la abundancia promedio de aves entre cuatro tipos de hábitats en primavera, verano e invierno en Carilauquen. Los hábitats con la misma letra no difieren significativamente (Prueba SNK de Comparaciones Múltiples no Paramétricas, P < 0.05).

	Bañado	Pichanal	Salitral costero	Matorral arbustivo	Н 3,40	P
Primavera	a	С	С	b	26.95	< 0.0001
Verano	a	С	b	b	21.67	0.0001
Invierno	a	b	b	b	26.50	< 0.0001

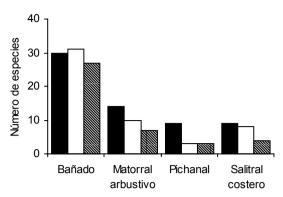


Figura 4. Riqueza acumulada de especies de aves (10 transectas) en primavera (barras negras), verano (barras blancas) e invierno (barras rayadas) en cuatro tipos de hábitat en Carilauquen.

rencia del resto, mientras que entre el pichanal y el salitral costero las relaciones son menos claras. Al analizar la similitud con el índice cuantitativo, las muestras de primavera y verano de cada hábitat fueron más similares entre sí que con respecto a las muestras de otros hábitats de la misma estación (Fig. 3). Sin embargo, las muestras de invierno no se agrupan según un patrón regular; en general, poseen menores valores de similitud.

Riqueza y abundancia

Todos los resultados en esta sección se basan en los muestreos con transectas de ancho variable. La riqueza de especies varió significativamente entre los cuatro tipos de hábitat considerados ($\chi^2 = 35.55$, gl = 3, P < 0.001). El bañado fue el hábitat más diverso durante todo el año (Fig. 4). En todos los casos el número de especies detectadas en el bañado fue superior al doble del que observamos en cualquiera de los otros tres hábitats; las diferencias fueron significativas en los tres casos posibles (Prueba de Chi-cuadrado corregida para comparaciones múltiples con P < 0.012; en los tres casos $\chi^2 > 12.94$, gl = 1, P < 0.001). El número de especies fue similar en el matorral arbustivo, el pichanal y el salitral costero (Fig. 4).

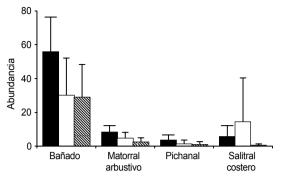


Figura 5. Abundancia promedio (+ DE) de aves (expresada como número de aves por transecta de 5 ha) en primavera (barras negras), verano (barras blancas) e invierno (barras rayadas) en cuatro tipos de hábitat en Carilauquen.

El cambio estacional más marcado en la riqueza de especies, para todos los hábitats combinados, se observó durante el invierno, con una disminución respecto a la primavera y el verano del 28% y el 24%, respectivamente. En los cuatro hábitats los valores observados de riqueza de especies fueron menores durante el invierno (Fig. 4); sin embargo, las diferencias no fueron significativas ($\chi^2 = 2.33$, gl = 2, P > 0.1).

La abundancia de aves varió marcadamente dentro y entre hábitats en la mayoría de los casos (Fig. 5, Tabla 2). En el bañado registramos la mayor densidad de aves: 77.1% de los registros correspondieron a este hábitat. Le siguió el salitral costero con 10.9% y el matorral arbustivo con 8.6% del total de aves observadas, mientras que, para una superficie igual, registramos para el pichanal sólo 3.5% del total de aves. Las diferencias entre hábitats en la abundancia promedio de aves fueron altamente significativas en cada una de las estaciones (Tabla 2). Estas diferencias se explican principalmente por la mayor densidad de aves en el bañado respecto al matorral arbustivo, al pichanal y al salitral costero. Entre estos últimos, la abundancia de aves fue más similar, particularmente en invierno cuando ninguno

Tabla 3. Diferencias en la abundancia promedio de aves entre primavera, verano e invierno en cuatro tipos de hábitats en Carilauquen. Las estaciones con la misma letra no difieren significativamente (Prueba SNK de Comparaciones Múltiples no Paramétricas, P < 0.05).

	Primavera	Verano	Invierno	$H_{2,30}$	P
Bañado	a	b	b	9.63	0.008
Pichanal	a	b	b	9.21	0.01
Salitral costero	a	a	b	8.19	0.02
Matorral arbustivo	a	b	С	12.82	0.002

de los tres hábitats difirió significativamente entre sí (Tabla 2).

Los cambios estacionales en la abundancia de aves también fueron marcados, aunque no tan pronunciados como las diferencias entre hábitats. La abundancia promedio de aves varió significativamente entre cada una de las estaciones en todos los hábitats considerados (Tabla 3), siendo mayor en primavera y menor en invierno (Fig. 5). Solo en el salitral costero la abundancia de aves fue mayor a fines del verano, debido principalmente a las bandadas de *Calidris bairdii* que buscaban allí su alimento. En la Tabla 1 se detallan las abundancias estimadas por ambiente y por estación de cada especie de ave.

En el sector relevado de las playas y aguas costeras de la laguna contamos en total 11544 individuos de al menos 28 especies, de los cuales 30.9% del total corresponde a Calidris bairdii, 23.4% a Phoenicopterus chilensis y 16.7% a Coscoroba coscoroba. El resto de los registros se distribuyen entre otras especies de chorlos y gaviotines (14.9%), gallaretas (Fulica spp., 7%), otras siete especies de anátidos (5.3%) y menos del 1% de las observaciones para las especies restantes. El recambio de especies y las variaciones estacionales en su abundancia fueron muy pronunciados (Fig. 6). Debido a que nuestro estudio no fue diseñado para conocer la abundancia de aves acuáticas de la laguna Llancanelo, solo relevamos un sector de costa comprendido entre el Cerro Trapal y la desembocadura de los bañados de Carapacho. Por ello, no es posible definir si los cambios en la abundancia observados en este sector de costa se debieron a la redistribución de las aves sobre todo el sistema de Llancanelo o a desplazamientos migratorios hacia y desde otros humedales. Este último es el caso de varias especies de limícolas de hábitos migratorios conocidos, como las tres especies del género *Calidris*. Al igual que para el resto del área de estudio, la abundancia de aves fue menor durante el invierno; las especies numéricamente dominantes no fueron las mismas en las estaciones sucesivas (Fig. 6).

Valor de conservación

Ningún hábitat obtuvo los mayores valores de conservación para todos los criterios (Tabla 4). El bañado posee los mayores valores para los primeros seis criterios listados en la tabla 4, en las cuales se considera conjuntamente a todo el ensamble de aves. El matorral arbustivo posee proporcionalmente más especies con distribución restringida sobre diferentes escalas espaciales, principalmente en su rango de distribución en el Neotrópico y en Argentina. Por otra parte, el matorral arbustivo, el bañado y el pichanal poseen elevado valor taxonómico promedio. En contraposición, el salitral costero posee bajos valores para la mayoría de los criterios analizados, tanto al considerar a todo el ensamble de aves como para los valores promedio. Finalmente, el pichanal y las playas y aguas costeras de la laguna poseen valores intermedios para la mayoría de los criterios de conservación.

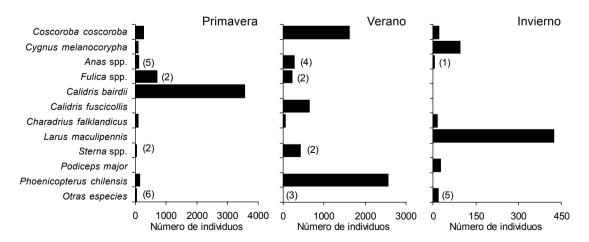


Figura 6. Abundancia de aves acuáticas observada en las playas y aguas costeras de un sector de la laguna de Llancanelo durante primavera, verano e invierno. Para los grupos se indica el número de especies entre paréntesis.

Tabla 4. Valores de conservación para las aves de cinco tipos de hábitat en Carilauquen. En negrita se indica el mayor valor para cada criterio.

	Playas y aguas costeras	Bañado	Pichanal	Salitral costero	Matorral arbustivo
Riqueza	30	61	32	21	27
Diversidad	0.81	0.91	0.79	0.61	0.83
Valor taxonómico	4.9	15.5	8.4	3.1	8.1
Valor por uso de hábitats	22.0	47.0	20.8	11.0	20.8
Valor por distribución en ecoregiones	10.2	19.6	11.2	6.0	10.5
Valor por distribución en el Neotrópico	21.8	40.6	21.6	13.2	19.7
Valor taxonómico promedio	0.16	0.25	0.26	0.15	0.30
Valor promedio por uso de hábitats	0.73	0.77	0.65	0.52	0.77
Valor promedio por distribución en ecoregiones	0.34	0.32	0.35	0.29	0.39
Valor promedio por distribución en el Neotrópic	o 0.73	0.67	0.67	0.63	0.73

Al reducir los múltiples criterios de conservación asignando rangos a los valores obtenidos para cada hábitat (Tabla 5), el bañado posee la mayor importancia para la conservación de la avifauna tanto al combinar todos los criterios como al considerar solo los valores absolutos de conservación. Por su parte, el matorral arbustivo es el hábitat con mayor importancia al considerar los valores promedio de conservación y es el segundo más importante al tener en cuenta todas los criterios combinados.

Discusión

Como en todo proyecto de evaluación ecológica rápida (Sayre et al. 2000), nuestros resultados brindan una visión puntual de los patrones ecológicos de la avifauna de Carilauquen y del estado poblacional de algunas especies. Aunque las restricciones de este tipo de evaluaciones limitan la capacidad de explicar los cambios temporales de los ensambles y de las poblaciones de aves (Young et al. 2000), la información sobre valores de conservación por hábitat es de utilidad para una zonificación general de la Reserva Provincial Laguna Llancanelo y de las zonas de amorti-

guamiento. Usualmente no se cuenta con elementos de juicio con base científica que permitan priorizar objetivamente las áreas al elaborar una estrategia de conservación regional (Prendergast et al. 1999). Las aves son consideradas un buen grupo indicador de los requerimientos de conservación de buena parte de los taxa que integran una comunidad y, por extensión, para definir áreas prioritarias para el mantenimiento de la diversidad biológica y ecológica, aunque en algunos casos el uso de un taxón indicador no fue adecuado para conservar otros grupos taxonómicos (e.g., Prendergast et al. 1993, Pimm y Lawton 1998). Sin embargo, el empleo de las aves como indicadores biológicos es avalado por la dificultad para medir la diversidad biológica total (Daniels et al. 1991, Stotz et al. 1996), sumado a la urgencia con la cual se deben tomar decisiones de conservación en Llancanelo debido a la creciente presión ganadera y a los renovados intereses de explotación petrolera. Tanto la Reserva Provincial como el Sitio Ramsar Laguna Llancanelo se crearon a instancias de conservar la avifauna de la zona, resaltando la importancia de utilizar a las aves como bioindicadores en esta área. Además, las aves resultaron el único grupo de vertebrados

Tabla 5. Síntesis de los valores de conservación para las aves de cinco tipos de hábitat en Carilauquen. En negrita se indica el mayor valor para cada caso.

	Playas y aguas costeras	Bañado	Pichanal	Salitral costero	Matorral arbustivo
Sumatoria de rangos de valores absolutos	18.0	30.0	19.5	6.0	16.5
Sumatoria de rangos de valores promedios	12.5	12.0	12.5	4.0	19.0
Sumatoria total de rangos	30.5	42.0	32.0	10.0	35.5

apropiado para evaluar conjuntamente toda el área de estudio con una aproximación basada en ensambles de especies como indicadores del valor de conservación (PG Blendinger, datos no publicados). La baja riqueza específica de otros taxa de vertebrados (1 anfibio, 6 reptiles, 14 mamíferos autóctonos), sumada a las bajas densidades poblacionales y a una menor detectabilidad de la mayoría de las especies, limita seriamente su utilidad como indicadores en la cuenca de la Laguna Llancanelo.

Los bañados son el hábitat prioritario para el mantenimiento de la diversidad de aves de Carilauquen. A lo largo de todo el año la mayor riqueza de especies y la mayor densidad de aves se encuentra asociada a los humedales, en especial a los bañados. Estos últimos son un importante sitio de nidificación y de alimentación para muchas especies de aves. En términos absolutos, su conservación permite el mantenimiento de numerosas especies, muchas de ellas con rangos de distribución particulares y con marcadas preferencias de hábitat. El matorral arbustivo, pese a su menor riqueza de especies, es también un hábitat de interés especial por la composición del ensamble de aves que alberga. Aunque posee un bajo número de especies, proporcionalmente alberga más especies que se distribuyen por menos regiones ornitogeográficas en el Neotrópico y por menos regiones ecológicas en nuestro país, ya sea por sus mayores requerimientos ecológicos, su menor tolerancia a las variaciones ambientales o su menor capacidad de dispersión. Es en el matorral arbustivo donde encontramos mayor proporción de especies de distribución geográfica restringida, entre ellas varias especies endémicas de zonas áridas de Argentina como Xolmis rubetra, Teledromas fuscus, Pseudoseisura gutturalis y Asthenes patagonica. De igual modo, el elevado valor taxonómico promedio del matorral arbustivo, el bañado y el pichanal se debe a que poseen, en promedio, más especies pertenecientes a géneros monotípicos o con solo unas pocas especies. Por ello, se debe contemplar la complementariedad de los bañados y de los matorrales arbustivos para implementar una estrategia de conservación que sea efectiva para la conservación regional de la avifauna. Los salitrales costeros no parecen ser un hábitat prioritario para la conservación de las aves de la región cuando consideramos al ensamble en su conjunto. Sin

embargo, puede ser especialmente importante como sitio de alimentación de especies individuales de aves. Dos especies migratorias, *Calidris bairdii* y *Lessonia rufa*, resultaron mucho más abundantes en este hábitat, donde se congregan en busca de insectos, principalmente chironómidos.

Los bañados de Carilauquen son un sistema diverso y rico en especies si consideramos que se hallan insertos en una región desértica; durante este estudio registramos en Carilauquen el 35% de las especies de aves conocidas para toda Mendoza (PG Blendinger y ME Alvarez, datos no publicados) y el 10% del total de especies de aves conocidas para Argentina. La riqueza de especies de Carilauquen se explica tanto por la mayor productividad de los ambientes acuáticos como por la marcada heterogeneidad del mosaico de hábitats presentes, cada uno de los cuales aporta especies exclusivas al conjunto total de especies. No solo hallamos una similitud muy baja entre hábitats en la composición de especies, sino que la mayor parte de las especies utilizan solo uno o dos hábitats diferentes. El número de especies no asociadas a ambientes acuáticos (42) es similar al observado con un esfuerzo de muestreo semejante en localidades de bolsones del extremo norte del Monte Septentrional, pero es sensiblemente menor al que se registró en localidades de los llanos de la región central del Monte Septentrional (Blendinger 2000, PG Blendinger, datos no publicados).

Los resultados de los análisis de similitud reflejan tanto los cambios estacionales en la composición de los ensambles como el menor número de especies exclusivas del pichanal y del salitral costero. El análisis de similitud cuantitativo es muy sensible a las especies más abundantes, lo que explica las diferencias observadas al compararlo con el análisis de composición de especies y las diferencias entre las estaciones de primavera-verano y el invierno, cuando hubo marcados cambios en la abundancia y composición de especies coincidentes con los desplazamientos migratorios de muchas especies.

La mitad de las especies de aves son residentes permanentes en Carilauquen, aunque mostraron marcados cambios estacionales en su abundancia. De la fracción de aves migratorias, cerca del 90% son visitantes estivales. El comportamiento migratorio de las especies de aves más abundantes explica gran parte de la variación estacional en la abundancia de aves de los humedales. Por ejemplo, la mayor parte de las poblaciones de *Agelaius thilius*, *Hymenops perspicillata y Phleocryptes melanops* se desplazaron del área durante los meses fríos de invierno. Pero también debe considerarse la dinámica del nivel de agua de la laguna, cuya reducción provocó en invierno la disminución de la superficie ocupada por los bañados y de la extensión de la línea de costa, con la consiguiente pérdida de hábitat para las especies acuáticas.

Hasta el presente, los esfuerzos para la conservación de la avifauna de la cuenca de la laguna de Llancanelo se centraron en los humedales (e.g., Canevari et al. 1998). Tanto la Reserva Provincial Laguna Llancanelo como el Sitio Ramsar Llancanelo incluyen al espejo de agua de la laguna, pero los límites perimetrales no son claros y la inclusión de los ambientes circundantes no está definida explícitamente. No obstante, los organismos responsables del control y manejo de este ecosistema no deben perder de vista a los ambientes terrestres no inundables contiguos a los humedales, los factores bióticos y abióticos que los regulan y los procesos naturales y humanos que los pueden modificar, no solo por el estrecho vínculo e interdependencia potencialmente existente entre ambos tipos de ambiente sino por las características exclusivas de los sitios no inundables. Incluso los límites entre ambos tipos de ambiente no son siempre discretos y claramente definidos, como consecuencia de los irregulares ciclos interanuales de sequía y anegamiento que sufre la región, y que afectan la extensión y los atributos de los distintos hábitats.

AGRADECIMIENTOS

Le agradecemos a Alicia Yapur, Rafael Blanquez, Heber Sosa y Hugo Asensio su colaboración en las diferentes etapas del trabajo de campo. Este estudio fue financiado por Repsol-YPF a través de la Fundación CRICYT como parte de los estudios de base en el Área Llancanelo.

Bibliografía Citada

BLENDINGER PG (2000) Ecología trófica de aves de zonas áridas. Tesis doctoral, Universidad Nacional de Tucumán, San Miguel de Tucumán

BLENDINGER PG Y OJEDA RA (2001) Seed supply as a limiting factor for granivorous birds in the Monte desert, Argentina. *Austral Ecology* 26:413–422

CANEVARI P, BLANCO DE, BUCHER EH, CASTRO G Y DAVIDSON I (1998) Los humedales de la Argentina: clasificación, situación actual, conservación y legislación. Wetlands International, Buenos Aires

Daniels RJR, Hegde M, Joshi NV y Gadgil M (1991) Assigning conservation value: a case study from India. *Conservation Biology* 5:464–475

EVENARI M, NOY-MEIR I Y GOODALL DW (1986) Hot deserts and arid shrublands. A. Elsevier Science, Amsterdam

GÓMEZ D, HAENE E Y BURKART R (1997) Eco-regiones de la Argentina. Dirección Nacional de Conservación de Áreas Protegidas, Administración de Parques Nacionales. Buenos Aires

GONNET JM (2001) Influence of cattle grazing on population density and species richness of granivorous birds (Emberizidae) in the arid plain of the Monte, Argentina. *Journal of Arid Environments* 48:569–579

VAN HEEZIK Y Y SEDDON PJ (1999) Effects of season and habitat on bird abundance and diversity in a steppe desert, northern Saudi Arabia. *Journal of Arid Environments* 43:301–317

IGLESIAS GJ Y PÉREZ AA (1998) Patagonia. Pp. 117–135 en: CANEVARI P, BLANCO DE, BUCHER EH, CASTRO G Y DAVIDSON I (eds) Los humedales de la Argentina: clasificación, situación actual, conservación y legislación. Wetlands International, Buenos Aires

KOTLER BP, DICKMAN CR Y BROWN JS (1998) The effects of water on patch use by two Simpson Desert granivores (*Corvus coronoides* and *Pseudomys hermannsburgensis*). Australian Journal of Ecology 23:574–578

MACLEAN GL (1974) Arid-zone adaptations in southern African birds. Cimbebasia 3:163–176

MARONE L (1991) Habitat features affecting bird spatial distribution in the Monte desert, Argentina. *Ecología Austral* 1:77–86

MARONE L (1992a) Seasonal and year to year fluctuations of bird populations and guilds in the Monte desert, Argentina. *Journal of Field Ornithology* 63:294–308

MARONE L (1992b) Estatus de residencia y categorización trófica de las especies de aves de la Reserva de la Biósfera de Ñacuñán, Mendoza. *Hornero* 13:207–210

MARONE L, LOPEZ DE CASENAVE J Y CUETO VR (1997) Patterns of habitat selection by wintering and breeding granivorous birds in the central Monte desert, Argentina. *Revista Chilena de Historia Natural* 70:73–81

MARTÍNEZ M, DARRIEU C Y SOAVE G (1997) The avifauna of Laguna Llancanelo (Mendoza, Argentina), a South American wetland of international importance. *Freshwater Forum* 9:35–45

- MÉNDEZ E (1997) Vegetación de la Reserva Provincial Laguna de Llancanelo (Mendoza, Argentina). Escala 1:100000. *Multequina* 5:addenda
- MORELLO J (1958) La Provincia Fitogeográfica del Monte. *Opera Lilloana* 2:1–155
- Noy-Meir I (1973) Desert ecosystems: environment and producers. *Annual Review of Ecology and Systematics* 4:25–51
- PIMM SL Y LAWTON JH (1998) Planning for biodiversity. Science 279:2068–2069
- Prendergast JR, Quinn RM y Lawton JH (1999) The gaps between theory and practice in selecting nature reserves. *Conservation Biology* 13:484–492
- Prendergast JR, Quinn RM, Lawton JH, Eversham BC Y Gibbons DW (1993) Rare species, the coincidence of diversity hotspots and conservation strategies. *Nature* 365:335–337
- RALPH CJ, GEUPEL GR, PYLE P, MARTIN TE Y DESANTE DF (1993) *Handbook of field methods for monitoring landbirds*. USDA Forest Service General Technical Report PSW-GTR 144, Albany
- RALPH CJ Y SCOTT M (1981) Estimating numbers of terrestrial birds. Studies in Avian Biology 6, Cooper Ornithological Society, Lawrence
- SAYRE R, ROCA E, SEDAGHATKISH G, YOUNG B, KEEL S, ROCA R Y SHEPPARD S (2000) Nature in focus: rapid ecological assessment. Island Press, Washington DC

- SCHODDE R (1982) Origin, adaptation and evolution of birds in arid Australia. Pp. 191–224 en: BARKER WR Y GREENSLADE PJM (eds) Evolution of the flora and fauna of arid Australia. Peacock Publications, Frewville
- SIBLEY CG Y MONROE BL JR (1990) Distribution and taxonomy of birds of the world. Yale University Press, New Haven y London
- SIBLEY CG Y MONROE BL JR (1993) Supplement to distribution and taxonomy of birds of the world. Yale University Press, New Haven y London
- Sosa HJ (1995) Actualización de la lista de avifauna de la Reserva Provincial Laguna Llancanelo, Malargüe, Mendoza. Presencia estacional, preferencia de hábitats y nidificación. *Multequina* 4:65–75
- STOTZ DF, FITZPATRICK JW, PARKER III TE Y MOSKOVITS DK (1996) *Neotropical birds: ecology and conservation*. University of Chicago Press, Chicago
- Wiens JA (1991) The ecology of desert birds. Pp. 278–310 en: Polis GA (ed) *The ecology of desert communities*. University of Arizona Press, Tucson
- Young B, Sedaghatkish G y Roca R (2000) Fauna surveys. Pp. 93–117 en: Sayre R, Roca E, Sedaghatkish G, Young B, Keel S, Roca R y Sheppard S (eds) *Nature in focus: rapid ecological assessment*. Island Press, Washington DC