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RESUMEN: En Argentina, el riesgo que los rodenticidas anticoagulantes podrían presentar para las aves ra-
paces locales fue reconocido inicialmente en la década de 1980. Lamentablemente, 40 años después de esta 
primera señal de alarma, los rodenticidas anticoagulantes siguen siendo ampliamente utilizados en el país y 
en toda Sudamérica, sin haberse estudiado el problema medioambiental que estos pueden suponer. Aquí pre-
sentamos una revisión práctica e integral sobre los rodenticidas anticoagulantes y la intoxicación por estos en 
aves rapaces. Discutimos su impacto, tanto sobre individuos como en poblaciones, como también los aspectos 
relacionados al manejo de animales intoxicados y a la necesidad de contar con capacidad diagnóstica en la 
región. La información aquí recopilada permitirá contar con contenidos relevantes, actualizados y accesibles 
necesarios para abordar el estudio de esta amenaza para la conservación de las aves rapaces de Argentina y de 
otros países de Sudamérica. Al mismo tiempo, esperamos que promueva investigaciones sobre el tema que per-
mitan dar los pasos necesarios para evaluar y mitigar el riesgo que el uso de los rodenticidas anticoagulantes 
puede tener sobre las aves rapaces y otra fauna silvestre.

PALABRAS CLAVE: aves rapaces, coagulación, conservación, intoxicación, manejo, prevención, rodenticidas anticoagu-
lantes, roedores, vitamina K

ABSTRACT: In Argentina, the risk that anticoagulant rodenticides could pose to local birds of prey was initially 
recognized in the 1980s. Unfortunately, 40 years after this first warning sign, anticoagulant rodenticides are 
still widely used in the country and throughout South America, without having studied the environmental pro-
blem that these products may cause. Here we present a practical and comprehensive review on anticoagulant 
rodenticides and their poisoning in birds of prey. We discuss their impact, both on individuals and their popula-
tions, the main aspects related to the management of intoxicated animals, and the need for diagnostic capacity 
in the region. The information collected here provides relevant, up-to-date, and accessible content necessary 
to address the study of this threat to the conservation of birds of prey in Argentina and other South American 
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“Obvio es anotar que no deben aplicarse rodenticidas 
allí, porque al hacerlo se eliminarán no sólo los roedores 
sino también un alto número de especies carnívoras entre 
las que se contará la Lechuza de Campanario (Tyto furca-
ta) con seguridad” - Elio Massoia (1983)

Rodenticidas Anticoagulantes: una amenaza 
ignorada para las aves rapaces

Las aves rapaces constituyen un grupo diverso y 
heterogéneo de especies, clásicamente comprendi-
das en tres órdenes (Strigiformes, búhos y lechuzas; 
Accipitriformes, águilas, buitres, cóndores, milanos y 
gavilanes; Falconiformes, caracaras y halcones) (Fer-
guson-Lees Christie 2001, Mikkola 2013, Bildstein 
2017, pero ver McClure et al. 2020 por una interpre-
tación diferente). Presentan una gran variedad de 
formas, adaptaciones y tamaños y se las encuentra 
en todos los continentes exceptuando la Antártida 
(Ferguson-Lees & Christie 2001, Mikkola 2013, Bilds-
tein 2017). Su amplio potencial predatorio y espectro 
trófico les permite ocupar una gran variedad y diver-
sidad de hábitats naturales o altamente modificados, 
tales como agroecosistemas, cultivos, plantaciones 
forestales e incluso áreas con variado grado de urba-
nización (Bildstein 2017, Boal & Dykstra 2018). Ac-
tualmente, una de cada cinco especies en este grupo 
presenta alguna amenaza de extinción y más de la mi-
tad tienen sus poblaciones en declive, principalmente 
por causas de origen antrópico (Donázar et al. 2016, 
McClure et al. 2018, 2023, O’Bryan et al. 2022, Shaw 
et al. 2024). La lista de noxas para las aves rapaces es 
extensa (Fig. 1), y pueden tener un efecto sinérgico 
que al combinarse puede afectar severamente a po-
blaciones enteras (McClure et al. 2018, 2023, Madden 
et al. 2019, Slater et al. 2020, Panopio et al. 2021, 
Gómez et al. 2022, Martinez-Ruiz et al. 2023, Shaw et 
al. 2024). Dentro de esta larga lista encontramos a los 
contaminantes ambientales, entre los que se encuen-
tran los rodenticidas anticoagulantes (RA) (Thomas 
et al. 2011, López-Perea & Mateo 2018, Murray 2018, 
Nakayama et al. 2019, Gómez et al. 2022). 

Ya a principios de la década de los 80 Elio Massoia, 
maestro normal nacional, referente de la mastozoolo-
gía argentina y pionero en el estudio de la dieta de aves 

rapaces neotropicales, alertaba sobre el peligro de los 
RA para búhos y lechuzas (Massoia 1983). Hoy, esta 
alerta sigue vigente, aunque ignorada; poco se ha avan-
zado en el estudio y prevención de la ecotoxicidad que 
los RA presentan para las aves rapaces y otra fauna sil-
vestre de Argentina, y lo mismo aplica a otros países de 
Sudamérica. Esto contrasta con las numerosas investi-
gaciones y publicaciones realizadas sobre la detección, 
prevalencia de exposición y efectos de los RA en aves 
rapaces en otras regiones del planeta. Por ejemplo, tan 
solo en Pubmed® entre los años 1990 y 2023 se iden-
tificaron 104 publicaciones científicas sobre este tema 
(Pubmed search: Rodenticide + Raptors), incluyendo 
artículos originales y revisiones en revistas científicas 
periódicas, a los que hay que sumar otras revisiones 
recogidas en libros (Watt et al. 2005, van den Brink et 
al. 2018, McClure et al. 2018, 2023, Rattner & Harvey 
2021, Gómez et al. 2022). Comparativamente, una bús-
queda similar para Argentina y Sudamérica (Pubmed 
search: Rodenticide + Raptors + Argentina o South 
America) identificó tan solo dos referencias (Plaza et al. 
2019, Saggese et al. 2022), coincidente con la limitada 
información que existe en general para las aves rapaces 
tanto en este país como en el subcontinente. 

El desconocimiento que existe en la región sobre 
los RA tiene diversas explicaciones. Por un lado, las 
aves rapaces argentinas y sudamericanas siguen 
siendo un grupo comparativamente poco estudiado 
(Bierregaard 1998, Saggese 2021) y con un número 
muy limitado de investigadores dedicados a ellas (Tre-
jo 2007, Trejo & Ojeda 2015). Además, la información 
sobre RA y la intoxicación por RA (IRA) está publicada 
principalmente en inglés y en revistas científicas que, 
por lo general, tienen un costo elevado para acceder 
a sus artículos. Esto dificulta el reconocimiento, la 
difusión y el entendimiento de esta amenaza para las 
aves rapaces en los países de habla castellana. Como 
resultado, el personal técnico perteneciente a agen-
cias de conservación y manejo de la fauna silvestre, 
veterinarios, agrónomos, agricultores, ingenieros en 
producción de alimentos, bromatólogos, y personal 
técnico y gerencial de compañías dedicadas al control 
de plagas suelen desconocer el problema. Incluso en-
tre ecólogos, ornitólogos, y rehabilitadores de fauna 
que trabajan con aves rapaces los RA suelen no ser 
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countries. At the same time, we hope that it will promote research on the subject that will allow the necessary 
steps to be taken to assess and mitigate the risk that the use of anticoagulant rodenticides may have on birds of 
prey and other wildlife.

KEYWORDS: anticoagulant rodenticides, coagulation, conservation, management, poisoning, prevention, raptors, ro-
dents, vitamin K
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considerados, y mucho menos investigados. Por lo tan-
to, resulta esencial disponer de información técnica 
detallada y actualizada sobre los RA y sus perniciosos 
efectos sobre las aves rapaces con un enfoque regional 
para cubrir así este vacío de información. 

El objetivo de esta comunicación es brindar una 
revisión práctica e integral sobre los RA, la intoxica-
ción que estos generan (IRA), su impacto sobre indi-
viduos y poblaciones de aves rapaces y su manejo y 
prevención. Esta información permitirá contar con 
contenidos relevantes, actualizados y accesibles que 
contribuyan a la difusión de esta amenaza para la 
conservación de las aves rapaces de esta región, y a 
promover investigaciones sobre el tema que permitan 
dar los pasos necesarios para reducir y/o eliminar 
eventualmente el impacto de los RA sobre las aves 
rapaces, otra fauna silvestre e incluso sobre la salud 
de los seres humanos y animales domésticos, abor-
dando el problema dentro del enfoque de Una Salud, 
de acuerdo con recientes recomendaciones (Pet-
tan-Brewer et al. 2022). 

Un problema con historia

Desde los albores de las primeras comunidades 
humanas que colectaban y almacenaban alimentos, 
las ratas, ratones y otros roedores han mantenido 
una sostenida asociación con los seres humanos (van 
den Brink et al. 2018). Posiblemente esta relación se 
extienda a la aparición del Homo sapiens hace aproxi-
madamente 200 000 años, e incluso mucho antes, con 
la emergencia de otras especies del género Homo, tales 
como H. neanderthalensis, quienes ya habitaban cuevas 
y otros refugios naturales donde almacenaban alimen-
tos (Nielsen et al. 2020). Esta convivencia no ha sido 
muy bien valorada debido al impacto negativo que los 
roedores tienen sobre la salud humana al transmitir 
enfermedades, consumir y dañar su alimento, causar 
daños edilicios e impactar negativamente sobre los 
cultivos, entre otras acciones perjudiciales. Así, los se-
res humanos han perseguido e intentado controlarlos 
por medio de diversos métodos desde la antigüedad 
(van den Brink et al. 2018, Ruiz-López et al. 2022). 

A principios del siglo XX, diversos compuestos 
químicos comenzaron a ser utilizados como rodentici-
das (Newton 1979, 1998). El sulfato de talio, el cianuro, 
la fluoroacetamida, la estricnina, y los fosfuros metá-
licos (de zinc o aluminio), entre otros, fueron aplica-
dos en el medio ambiente con este fin (Newton 1979, 
1998). Desde su uso inicial estos compuestos fueron 
reconocidos como de alto riesgo para seres humanos 
y animales domésticos (Lipton & Klass 1984), limitán-

dose o suspendiéndose su uso hacia finales del siglo 
pasado en algunos países, siendo reemplazados por 
otros considerados menos peligrosos. Así, en 1920, el 
descubrimiento de los efectos anticoagulantes de la 
cumarina, presente en tréboles del género Mellilotus, 
y su derivado dicumarol, dio origen a la era de los RA 
con el desarrollo de la warfarina (Link 1959, Jackson 
& Ashton 1992). A partir de su comercialización en los 
años 40s, los RA tomaron un mayor protagonismo en 
los esfuerzos para combatir roedores, difundiéndose 
su aplicación global rápidamente (Jacob & Buckle 
2018). Sin embargo, poco después de su uso inicial, 
sus residuos metabólicos comenzaron a ser detecta-
dos en un amplio rango de especies de fauna silvestre 
no blanco (Brakes & Smith 2005, Riley et al. 2007, Sán-
chez-Barbudo et al. 2012, Langford et al. 2013, Elliott 
et al. 2014). En las décadas siguientes, una gran va-
riedad de derivados de la cumarina (y también de las 
indandionas, otro grupo con similares propiedades 
y mecanismo de acción) ganaron popularidad como 
rodenticidas, expandiéndose este uso a todos los 
continentes (Jacob & Buckle 2018). Un indicador del 
uso masivo de los RA viene dado por el valor que este 
mercado alcanzó en los últimos años como resultado 
de políticas y acciones tanto de carácter privado como 
gubernamentales destinadas a combatir roedores. 
Así, en el año 2019, el uso global de estos productos 
alcanzó un valor cercano a los 2000 millones de dó-
lares y se anticipa que este valor alcanzará los 2700 
millones de dólares en el año 2027 (Anónimo 2023a).

Reconocimiento inicial de los efectos de los RA en 
aves rapaces y otra fauna silvestre 

Los efectos de los RA sobre la fauna silvestre fue-
ron reconocidos inicialmente a finales de la década de 
1960 en visones (Neovison vison) (Evans & Ward 1967). 
En las décadas siguientes, estos compuestos comen-
zaron a ser detectados en el hígado y otros tejidos de 
aves rapaces y otras especies expuestas a RA, tanto en 
condiciones experimentales de laboratorio como en 
forma natural (Mendenhall & Pank 1980, Newton et 
al. 1999). Estudios posteriores han confirmado estos 
hallazgos y establecido la toxicidad e impacto de es-
tos RA en aves rapaces de Estados Unidos y Canadá 
(Newton et al. 1990, Stone et al. 2003, Elliott et al. 
2022) y Europa (Newton 1999, Lambert et al. 2007, 
Christensen et al. 2012, Sánchez-Barbudo et al. 2012, 
Oliva-Vidal et al. 2022). Los RA también han sido de-
tectados en aves rapaces de Malasia (Salim et al. 2014) 
y Taiwán (Hong et al. 2018, 2019) en Asia, y en Aus-
tralia (Lohr 2018, Pay et al. 2021, Cooke et al. 2023) 
y Nueva Zelanda (Eason et al. 2002) en Oceanía. Esto 
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confirma que la exposición de las aves rapaces a estos 
compuestos es un problema global (Jacob & Buckle 
2018, Nakayama et al. 2019, Gómez et al. 2022).

En Argentina, el riesgo que los RA podrían pre-
sentar para las aves rapaces locales fue reconocido 
tempranamente a partir del conocimiento ecológico 
general, la evidencia científica que comenzaba a ser 
recogida en otros lugares del mundo y el sentido co-
mún incluso en ausencia de evidencias clínicas o de 

un diagnóstico toxicológico (Massoia 1983, Massoia 
com. pers.). Lamentablemente, 40 años después de 
esta primera señal de alarma, los RA siguen siendo 
ampliamente utilizados en el país y en toda Sudamé-
rica (ver luego), sin reconocerse el problema de salud 
pública y medioambiental que estos suponen (Plaza 
et al. 2019, Saggese et al. 2022).

Tipos de Rodenticidas Anticoagulantes

Los RA son un grupo funcional de compuestos 
orgánicos que derivan de modificar la estructura quí-
mica de la 4-hidroxicumarina y la indandiona (Material 
suplementario A). Por sí solas, estas moléculas tienen 
actividad anticoagulante limitada en comparación con 
las formas derivadas. De acuerdo con su actividad bio-
lógica, podemos dividir a los RA en aquellos denomina-
dos de primera (RAPG) y de segunda (RASG) generación 
(Material suplementario A; Valchev et al. 2008, Murphy 
2012, Rattner & Mastrota 2018, Mercer et al. 2022). 

Los RAPG incluyen a la warfarina, coumaclor, 
difacinona, pindona, valona, clorofacinona, couma-
furil y coumatetralil. Los RAPG usualmente requieren 
de una exposición repetida por medio de la ingesta 
de varias dosis y durante varios días para causar su 
efecto letal. La excepción dentro de este grupo es el 
coumatetralil, caracterizado por tener una acción 
comparativamente más larga (Watt et al. 2005, Naka-
yama et al. 2019). Poco después de su amplia difusión 
y extendido uso comenzó a observarse una resisten-
cia a los RAPG en los roedores (Boyle 1960, Buckle 
et al. 1994, Cowan et al. 2016, Feinstein et al. 2016), 
quienes directamente evitaban los rodenticidas o ya 
no morían al ingerirlos. Esto dio origen al desarrollo 
y utilización de un nuevo y amplio elenco de RASG a 
partir de la década de 1970, pese a ser más costosos 
que los de RAPG (Nakayama et al. 2019). Los RASG 
incluyen al brodifacoum, bromadiolona, difenacoum, 
flocoumafen y difetialona. Suelen recibir el nombre 
de “superwarfarinas”, “RA de dosis única o monodo-
sis” o “RA de larga acción”, ya que no suelen requerir 
más que un único evento de exposición para lograr 
su objetivo. Los RASG suelen ser más palatables (son 
fácilmente aceptados por los roedores) y los roedo-
res expuestos mueren varios días e incluso semanas 
después de la ingesta y sin asociar el consumo del 
producto con su efecto letal (Watt et al. 2005, Murphy 
2012, Nakayama et al. 2019). 

Los RASG presentan una cadena lateral de hidro-
carburos policíclicos en “-3”, incrementando su afini-
dad por la vitamina K1-2,3 epoxireductasa, haciéndo-
los más tóxicos que los RAPG (Rattner & Harvey 2021, 

Figura 1. Principales noxas que pueden afectar la conservación de 
numerosas especies de aves rapaces diurnas y nocturnas. A) Cóndor 
Andino (Vultur gryphus), B) Caburé Grande (Glaucidium nana), C) 
Gavilán Ceniciento (Circus cinereus), D) Halconcito Colorado (Falco 
sparverius). Fotos F. Vital.

Figura 2. Situaciones y lugares donde la utilización de los RA es 
frecuente.
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Mercer et al. 2022). Recientemente, se ha detectado 
resistencia a RASG tales como la bromadiolona, el 
brodifacoum y el difenacoum (Vein et al. 2011, Buckle 
2013, Ruiz-López et al. 2022). Los RASG más utiliza-
dos y detectados en especies no blanco suelen ser el 
brodifacoum, la bromadiolona y el difenacoum, solos 
o combinados (más de un RA identificado en el hígado 
de un mismo animal) (Stone et al. 2003, Langford et al. 
2013, Nakayama et al. 2019).

Es importante mencionar que muchos otros pro-
ductos, llamados rodenticidas no anticoagulantes, han 
sido y/o continúan siendo aplicados globalmente para 
combatir roedores y otras especies animales, incluyen-
do la vitamina D3 (colecalciferol) y la brometalina, entre 
otros, cuya utilización está en aumento (Gupta 2018). 
Revisiones recientes de estos compuestos y discusio-
nes sobre su toxicidad para animales y seres humanos 
escapa al objetivo de este trabajo, pero pueden encon-
trarse en Swenson & Bradley (2013), Gupta (2018), 
Isackson & Irizarry (2022) y Murray & Cox (2023).

Uso y comercialización de RA 

Los RA se utilizan en todo lugar donde haya roe-
dores que eliminar. Esto implica una variada y amplia 
posibilidad de situaciones donde estos compuestos 
pueden causar sus efectos sobre las especies blanco 
y no blanco (Fig. 2). Un ejemplo es la aplicación de RA 
en grandes cantidades en la zona norte del bosque 
andino patagónico, Argentina, como respuesta a ex-
plosiones demográficas cíclicas de roedores (Sage et 
al. 2007). En más de uno de estos episodios se han re-
gistrado muertes masivas de estrigiformes en la etapa 
post-control (V. Ojeda, datos sin publicar). La presen-
tación epidemiológica y los resultados de necropsia 
apoyan el diagnóstico presuntivo de IRA en estas aves 
(V. Ojeda, datos sin publicar).

La utilización y comercialización de los RA está 
sujeta a regulaciones que varían con el país, esta-
do, provincia o municipio. Por ejemplo, en EEUU, la 
venta y aplicación de RASG suele estar restringida a 
profesionales y su aplicación autorizada únicamente 
a situaciones específicas, no estando permitidos para 
su aplicación por parte del público general (Quin et 
al. 2019, Saggese et al. en prensa). Los RAPG pueden 
seguir siendo comercializados y utilizados por estos 
actores, dado que son considerados de menor riesgo 
de exposición secundaria debido a su vida media más 
corta (Erikson & Urban 2004, Murray 2011), si bien 
recientemente se han iniciado acciones, por ejemplo, 
en California, donde la legislatura estatal promulgo 
una ley para reducir el acceso y uso de la difacinona, 

un RAPG disponible al público general hasta el 2023. 
En España, los RA están disponibles para el uso do-
méstico del público general en tiendas no especiali-
zados en este tipo de compuestos, si bien su uso como 
plaguicidas ya no está autorizado en la agricultura 
(MAPA 2024). En Argentina, la lista de RA autorizados 
y disponibles comercialmente es publicada por la 
ANMAT (Administración Nacional de Medicamentos, 
Alimentos y Tecnologías), perteneciente al Ministerio 
de Salud, Presidencia de la Nación de la República 
Argentina. Hasta octubre del 2023, se lista, sobre un 
total de 175 “Productos desinfestantes” (sic) / plagui-
cidas (insecticidas, raticidas) de “Venta Profesional”, 
a 41 formulaciones “raticidas” del tipo RA de “Venta 
Libre” y elaborados por 14 laboratorios autorizados 
(ANMAT 2024a). De esa lista, el RA presente en más 
formulados comerciales es el brodifacoum (n=22, 
54%) seguido por la bromadiolona (n=14, 34%). La 
difetialona (n=2), el flocoumafen (n=2) y la warfarina 
(n=1) constituyen el 12% restante. Además, en otro 
listado la ANMAT autoriza unos 5 productos conte-
niendo bromadiolona (n=3) y brodifacoum (n=2), ela-
borados por 4 laboratorios diferentes, como de venta 
libre (ANMAT 2024b). Si bien estas listas son renova-
das periódicamente por la ANMAT, estos productos 
permanecen en el mercado por tiempo prolongado, 
incluso luego de su remoción de estos listados. 

Los productos autorizados y provenientes de la-
boratorios registrados deben incluir en su etiqueta la 
sustancia activa, indicaciones para su manipulación, 
descripción de las posibles vías de absorción, toxi-
cidad en humanos y animales domésticos, primeras 
medidas ante la exposición accidental, recomenda-
ciones para los agentes primarios de salud y la di-
rección y número de teléfono del centro toxicológico 
más cercano. Desafortunadamente, la existencia de 
normas y disposiciones que reglamentan su comer-
cialización en Argentina no aseguran su cumplimien-
to. Esto obedece a deficiencias en la fiscalización, 
ausencia de educación ambiental y también al desin-
terés y/o desconocimiento por parte de los usuarios. 
Diversos centros mayoristas de distribución venden 
estos RA a subdistribuidores, compañías dedicadas 
al manejo de plagas y a subcontratistas. Estos suelen 
contar con asesoramiento profesional y, dentro del 
marco legal argentino, solo pueden vender ciertos 
productos a distribuidores y terceros autorizados por 
el Ministerio de Salud de la Nación. Tanto en nuestra 
experiencia como en la de otros colegas sudamerica-
nos (S. Alvarado-Chile, com. pers.; L. Arias Bernal-Co-
lombia, com. pers.; M. Freundt y J. A. Otero-Perú, com. 
pers., E. Pio Carvalho-Brasil, com. pers.), este tipo de 
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comercialización es de muy difícil fiscalización y no 
está siempre restringida a profesionales o empresas 
habilitadas y controladas, tanto en Argentina como en 
estos y otros países sudamericanos. En estos, el públi-
co general también suele tener acceso a la compra de 
estos productos en centros de acopiamiento y distri-
bución, incluso en negocios minoristas, sin mayores 
controles ni asesoramiento sobre las pautas mínimas 
necesarias para aplicarlos sin poner en riesgo la salud 
del operador, de terceros, animales domésticos y fau-
na silvestre. Ferreterías, empresas de materiales para 
la construcción, viveros, cadenas de supermercados 
y almacenes, entre otras bocas de expendio venden 
estos productos al público general. Incluso pueden 
obtenerse en tiendas para mascotas, veterinarias y fo-
rrajearías (autores-Argentina, datos no publicados; S. 
Alvarado-Chile, com. pers.; M. Freundt y J. A Otero-Pe-
rú, com. pers.; L. Arias Bernal-Colombia, com. pers.; 
E. Pio Carvalho-Brasil, com. pers.). De acuerdo con lo 
publicitado en un sitio de venta online de Argentina 
(accedida en enero 2024), más de 290 productos co-
merciales son comercializados en diferentes formas 
y concentraciones. La oferta hallada de productos 
incluye algunos importados de otros países, por 
ejemplo de China, que se anuncian como uno de los 
más vendidos y efectivos, sin incluir al menos una 
descripción de sus componentes activos en su empa-
que, y que no se pudo encontrar en los registros de la 
ANMAT. Muchos otros productos registrados en listas 
previas de la ANMAT, hoy no permitidos, estarían aun 
circulando en el mercado, incluyendo productos que 
contienen difenacoum al 0.025%, muy por encima de 
la riqueza (concentración) del 0.005% normalmente 
usada en los formulados de RASG.

La presentación comercial y forma de administra-
ción de todos los RA es variada. En Argentina y otros 
países sudamericanos se los obtiene en forma de 
gránulos, bloques parafinados (con lo cual perduran 
en el ambiente sin descomponerse ni perder sus pro-
piedades, cuando no son consumidos rápidamente), 
extrudados (“pellets”) y pastas o jaleas. Todas estas 
con diferentes concentraciones del producto base 
(brodifacoum, bromadiolona y flocoumafen al 0.005%, 
difetialona al 0.0025%, warfarina y difenacoum al 
0.025%) en un excipiente palatable para los roedores. 
Las formulaciones suelen estar teñidas con colores in-
tensos como el verde, azul, amarillo o rojo con la fina-
lidad de atraer aún más a los roedores, excretándose 
sin modificaciones en las heces, característicamente 
teñidas, de estos animales, lo que denota su consumo 
(Jackson & Ashton 1992, Watt et al. 2005). Algunos de 
estos productos contienen también un componente 

que le otorga sabor amargo, con el fin de prevenir su 
ingesta por niños y mascotas (Watt et al. 2005). 

Usualmente los RA deben ser colocados dentro 
de cajas cebaderas (hechas de polietileno de alta 
densidad u otros materiales plásticos) de diferente 
tamaños y formas o en tubos de PVC que sirven como 
sitio de exploración, refugio y, sobre todo, de búsque-
da de alimento para los roedores (Fig. 3). Deben ser 
herméticas y de difícil apertura para niños y animales 
(Jackson & Ashton 1992); pero esta propiedad de las 
cajas puede perderse en algunos casos como resulta-
do de su uso repetido, desgaste y exposición a factores 
ambientales que disminuyen su hermeticidad. Todo 
esto favorece la liberación de los RA al medio ambien-
te, predisponiendo a su consumo por parte de otras 
especies no blanco.

Las cajas cebaderas clásicamente poseen un sitio 
de entrada y uno de salida (Fig. 3) para los roedores 
que suelen investigarlas, al ser atraídos por los ce-
bos, durante sus desplazamientos. Se las sitúa en 
lugares estratégicos donde los roedores transitan (por 
ejemplo, pegadas a las paredes, en altillos o sujetas 
a ramas, Fig. 3), a una distancia variable una de otra 
según el grado de infestación por roedores, o en luga-
res donde los mismos buscan o acceden al alimento. 
Estas cajas cebaderas deberían estar correctamente 
identificadas mediante una etiqueta con información 
sobre la compañía u operador responsable, el RA 
utilizado, su concentración, exhibir el símbolo o pic-
tograma de veneno y leerse claramente “no tocar” o 
“peligro, veneno”. También deben incluir un número 
de identificación, y aportar información sobre centros 
toxicológicos (nombre, dirección y teléfono) en forma 
clara y visible. Sin embargo, raramente se cumplen 
todas estas disposiciones (Fig. 3). 

¿Como se exponen las aves rapaces y otros anima-
les a los RA? 

Los cebos con RA no solo son atractivos para los 
roedores comensales que se desea controlar sino que 
también son consumidos en forma directa por nume-
rosas especies no blanco, incluyendo roedores silves-
tres (MAD 2021a). Invertebrados (crustáceos, insec-
tos, arañas, lombrices, caracoles y babosas), reptiles 
(lagartijas, serpientes), anfibios (ranas y sapos), otros 
mamíferos y aves pequeñas también pueden acceder 
a ellos (Booth et al. 2003, Thomas et al. 2011, Johnston 
et al. 2015, Masuda et al. 2015, Pitt et al. 2015, Poessel 
et al. 2015, Alomar et al. 2018, Elmeros et al. 2019, 
Nakayama et al. 2019, Lettoof et al. 2020). La lluvia y 
los sistemas de riego pueden humedecer estos cebos y 
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Figura 3. Distintos modelos y usos de cajas cebaderas con variada información en sus etiquetas. A y B indican el RA utilizado, nombre y número 
de la empresa (tachado) y la palabra (o símbolo) “veneno”. C muestra el símbolo de veneno, indica en forma escrita y clara “Peligro-No tocar” y la 
información sobre la empresa responsable, pero no indica el producto utilizado ni aporta información sobre centros toxicológicos. En relieve y 
en la etiqueta puede leerse Peligro-No tocar. D es una caja cebadera para ratones, de menor tamaño, sin ningún tipo de información. E muestra 
una caja cebadera del tipo circular. F y G muestran cajas cebaderas colocadas a la entrada de una estación de servicio (gasolinera) y en una 
planta industrial a lo largo de un corredor. Fotos M.D. Saggese (A, B, C, D, F y G) y S. Alvarado (E).

Figura 4. Escenarios hipotéticos y simplificados de intoxicación con RA en aves de presa y otras especies silvestres y domésticas. A partir del 
uso de estos productos en una variedad de situaciones, los roedores, por ejemplo, el Ratón Doméstico (Mus musculus) y otras especies no blanco 
tales como la Lagartija Verde Patagónica (Liolaemus gununakuna), la Rana del Challhuaco (Atelognathus nitoi), el Caracol Común (Cornu aspersum) e 
insectos como la Tucura Sapo (Bufonacris claraziana) pueden intoxicarse al consumirlos. Estas y otras especies contaminadas pueden ser presa 
de aves rapaces, como el Aguilucho Andino (Buteo albigula) y la Lechuza de Campanario (Tyto alba), y de carnívoros como el Zorro Gris (Lycalopex 
griseus) y el Gato Huiña (Leopardus guigna) e incluso otras aves carnívoras y/o insectívoras, como la Bandurria Austral (Theristicus melanopis). Todas 
ellas pueden ser incluso fuente de RA para especies carroñeras como el Cóndor Andino (Vultur gryphus). Fotos F. Vidal y N. Perez.
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arrastrar los RA hacia estanques, desagües y charcos, 
aportando estos compuestos a microhábitats dentro 
de la cadena trófica de peces, anfibios, otros verte-
brados e invertebrados acuáticos, pudiendo incluso 
desembocar en ecosistemas fluviales y marinos (Ma-
suda et al. 2015, Pitt et al. 2015, Regnery et al. 2020). 
Dado que todas estas especies tienen el potencial de 
convertirse en presas o carroña, incluso aves rapaces 
contaminadas (Valverde et al. 2020), las cadenas de 
contaminación varían con cada ecosistema. 

Las aves rapaces incorporan principalmente a los 
RA de forma indirecta y en diferentes concentracio-

nes (Hindmarch & Elliot 2018) (Fig. 4). Dependiendo 
de cuáles son los compuestos utilizados en un deter-
minado escenario espaciotemporal, y qué organismos 
sean afectados, las aves rapaces pueden exponerse a 
más de un producto y en repetidas ocasiones (Hind-
march & Elliot 2018). Los roedores intoxicados con 
RA presentan incoordinación, ambulación dificultosa 
y un estado mental deprimido o estuporoso, lo que 
suele facilitar su captura por parte de las aves rapaces 
(Fig. 5) y otros predadores (Cox & Smith 1992, Vyas et 
al. 2017), si bien no son las únicas afectadas (Dowding 
et al. 2010, Thomas et al. 2011, Shore & Coeurdassier 
2018). Así, especies que se alimentan de serpientes, 
aves y mamíferos (vivos o como carroña) que han con-
sumido roedores y otras presas contaminadas, tanto 
vertebrados como invertebrados, también pueden 
tener una alta prevalencia de exposición a RA, de-
mostrado por su detección en el hígado en todas ellas 
(Stone et al. 2003, Ruiz-Suárez et al. 2012, Poessel et 
al. 2015, Hong et al. 2019). Algunas rapaces accede-
rían a estos productos de forma directa, por ejemplo 
en el caso de especies carroñeras (jotes, caracaras) 
que podrían consumir gránulos o pellets ofertados 
abiertamente en entornos urbanos, naturales, rurales 
e incluso basurales (Howald et al. 1999, Plaza & Lam-
bertucci 2020, Bouker et al. 2021). 

Diversos autores han reportado la presencia de RA 
en Jotes Cabeza Colorada (Cathartes aura) (Borst & Cou-
notte 2002, Stone et al. 2003, Kelly et al. 2014, Herring 
et al. 2022, 2023, Saggese et al. en prensa). El hallazgo 
de RA en el hígado de un amplio número de Cóndores 
de California (Gymnogyps californianus) y Jote Cabeza 
Colorada en Norteamérica, así como en diversas espe-
cies de buitres en Europa, demuestra que estas espe-
cies carroñeras no están exentas (Howald et al. 1999, 
López-Perea & Mateo 2018, Elliott et al. 2022, Herring 
et al. 2022, 2023, Oliva-Vidal et al. 2022, Saggese et 
al. en prensa), al consumir como carroña una amplia 
diversidad de especies (Bildstein 2021), incluyendo 
roedores que encuentran no solo en áreas naturales 
sino también en ciudades y áreas peri y suburbanas. 
Esto es de suma preocupación para el Cóndor Andino 
(Vultur gryphus), una especie sudamericana considera-
da Vulnerable debido a diversas amenazas y noxas de 
origen antrópico (Plaza & Lambertucci 2020, Restre-
po-Cardona et al. 2022), y de la cual se sospecha que 
podría estar expuesta a los RA en numerosas áreas a lo 
largo de su distribución en el subcontinente. 

Mecanismo de accion de los RA

Los RA interfieren con los mecanismos de coagu-
lación de la sangre, causando coagulopatías y diversos 

Figura 6. Mecanismo de acción simplificado de los rodenticidas anti-
coagulantes (RA). Fotos F. Vital.
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Figura 5. Ejemplos de aves rapaces presentes en Argentina consu-
midoras de roedores capturados vivos (A, B, C, D) o como carroña 
(E). A) Peuquito (Accipiter chilensis), B) Aguilucho Ñanco (Geranoaetus 
polyosoma), C) Tucuqueré (Bubo magallanicus), D) Lechuza de Campana-
rio y E) Matamico Blanco (Daptrius albogularis). Los ejemplares en B y 
C están aportando roedores a sus pollos en nidos. Fotos J. Calo Couat 
(A), A. Moya Riffo (B y C), N. Perez (D) y F. Vital (E).
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grados de hemorragia (Watt et al. 2005, Murphy 2012, 
López-Perea & Mateo 2018). Estos mecanismos inclu-
yen la síntesis hepática y activación de componentes 
de la sangre (factores II, VII, IX y X) que forman parte 
de lo que se denomina “cascada de coagulación”. Es-
tos factores interactúan entre sí de forma secuencial 
cuando es necesario, especialmente ante traumas que 
pueden producir hemorragias. Se encuentran evolu-
tivamente conservados entre los vertebrados, lo cual 
explica al efecto generalizado de los RA sobre diferen-
tes grupos animales, donde actúan en forma similar 
(Doolittle & Feng 1987, Isackson & Irizarry 2022).

La interacción bioquímica específica por la cual 
un químico produce su efecto, farmacológico o toxico-
lógico, se denomina mecanismo de acción. En el caso 
de los RA, este mecanismo es a través de la inhibición 
de la enzima vitamina K1-2,3-epoxireductasa (Fig. 6), 
a la que se unen rápidamente por medio de uniones 
covalentes (Watt et al. 2005). Esta enzima está codi-
ficada en el gen cromosómico VKORC1 (Chua et al. 
2022), siendo necesaria para reciclar la vitamina K1 
(también llamada filoquinona o fitomenadiona), for-
ma biológicamente activa, desde su forma inactivada, 
la vitamina K1-2-3 epóxido. Como resultado de esta 
incapacidad para ejercer su efecto, los factores II, VII, 
IX y X de la cascada de la coagulación (todos ellos 
dependientes de la presencia de vitamina K1), no 
son sintetizados en forma activa (carecen de residuos 
gamma carboxilados) por el hígado y rápidamente se 
produce una depleción en sangre dado su reducida 
vida media (Gupta 2018). 

¿Qué le hace el organismo a los RA una vez que son 
ingeridos por las aves rapaces?

La principal ruta de entrada de los RA es la vía oral 
(Valchev et al. 2008, Vandenbroucke et al. 2008). Otras 
vías, como la respiratoria e incluso la percutánea, no 
son de importancia para las aves rapaces (Lipton & 
Klass, 1984). Al ser compuestos orgánicos y liposolu-
bles, una vez ingeridos se absorben rápidamente a tra-
vés de la mucosa intestinal (Murphy 2018). Una vez en 
sangre, circulan unidos a proteínas transportadoras 
como la albúmina, distribuyéndose en los diferentes 
órganos y tejidos (Watts et al. 2005). Los RASG, tanto 
para las especies blanco como no blanco, son metabo-
lizados lentamente en el hígado, donde se bioacumu-
lan. Dependiendo de los compuestos, pueden persis-
tir allí por semanas o meses (Rattner & Harvey 2021, 
Elliot et al. 2022, 2024) en altas concentraciones. Esto 
es debido a la presencia, y alta afinidad hacia los RA 
de la enzima vitamina K1-2,3-epoxireductasa, locali-
zada en la membrana citoplasmática del hepatocito, 

y a la liposolubilidad de estos compuestos (Watts et 
al. 2005, Thomas et al. 2011, Nakayama et al. 2019). 
Finalmente, se excretan por orina y por heces a través 
de la bilis, pudiendo también presentar un ciclo en-
terohepático (reabsorción intestinal hacia el torrente 
circulatorio de un fármaco secretado en la bilis). 

¿Cuáles son los efectos de los RA sobre las aves 
rapaces?

Los efectos de los RA son muy variables, y de-
penden de la especie, edad, tiempo de exposición, 
estructura y expresión de VKORC1, cantidad incorpo-
rada, bioacumulación, número y tipo de rodenticida 
ingeridos (Thomas et al. 2011, Sanchez-Barbudo et 
al. 2012, Rattner & Harvey 2021, Elliott et al. 2024). 
Así, una exposición única reducida y a bajas concen-
traciones posiblemente no resulte en signos clínicos o 
alteraciones subclínicas. Lo contrario es de esperar a 
dosis altas, frecuencias repetidas y ante la exposición 
a RA de alta potencia, como los RASG. La exposición 
repetida debido a la mayor longevidad de algunos in-
dividuos o especies estaría asociada a una mayor eco-
toxicidad (Rattner & Harvey 2021, Elliott et al. 2022). 

Los RASG tienen mayor potencia para inhibir la 
vitamina K1-2,3 epoxireductasa que los RAPG y por 
tiempo más prolongado, hasta varios meses (Watt et 
al. 2005, Rattner et al. 2020). Variaciones y diferencias 
intraespecíficas en la estructura de esta enzima serían 
responsables, en parte, de la diferente toxicidad ex-
hibida por distintas especies de rapaces y a la mayor 
sensibilidad de este grupo comparado con otras aves 
(Rattner & Harvey 2021). Las diferencias en las dosis 
de RA ingeridas es también una variable importante. 
Sin embargo, concentraciones bajas, entre 50 y 200 
ng/g de RA en hígado, son compatibles con intoxica-
ción (Thomas et al. 2011, Elliot et al. 2024). Se ha ob-
servado que las concentraciones hepáticas de un RA 
en distintas especies pueden ser iguales, pero causar 
diferentes efectos en cada una de ellas (Rattner & Har-
vey 2021). Las variaciones en la concentración de RA, 
tanto en hígado como en sangre, observadas en diver-
sos estudios podrían representar una medición aislada 
o puntual dentro de una curva toxicocinética a lo largo 
del tiempo. Incluso diferencias fisiológicas (como el 
estado y momento reproductivo), tipo y diversidad de 
la microbiota intestinal (diversas bacterias sintetizan 
vitamina K), entre otros factores, pueden explicar di-
ferentes presentaciones clínicas como resultado de 
la IRA en aves de presa (Rattner et al. 2020, Rattner & 
Harvey 2021). 

La presencia o no de signos clínicos en aves rapa-
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ces expuestas a RA en función de las concentraciones 
hepáticas sigue siendo poco entendida. Individuos 
con concentraciones hepáticas consideradas compa-
tibles con efecto tóxico en otras especies pueden no 
presentar signos clínicos (Murray 2018, Rattner et 
al. 2020, Rattner & Harvey 2021). Valores mayores a 
0.1-0.2 mg/kg fueron inicialmente sugeridos como 
potenciales umbrales de toxicidad para la Lechuza 
Común (Tyto alba) en Europa (Newton et al. 1999). 
Sin embargo, concentraciones menores, del orden de 
0.01 mg/kg pueden estar asociadas a manifestaciones 
clínicas y letalidad por exposición a RA (Thomas et al. 
2011, Elliot et al. 2024). De esto se desprende que, si 
bien se han propuesto diferentes umbrales de toxici-
dad para algunas especies, estos valores no están aun 
completamente determinados y requieren investiga-
ción. Las concentraciones halladas para ciertos RA en 
las especies investigadas no necesariamente pueden 
extrapolarse a otras especies ni a otros compuestos; 
diferentes concentraciones de RA tendrían diferentes 
efectos según la especie (Thomas et al. 2011). 

La IRA suele manifestarse de dos formas: una 
forma letal (sensu ecológico) o clínica (sensu médico) 
y una forma subletal (sensu ecológico) o subclínica 
(sensu médico) (Redig & Arent 2008, Murray 2018, 
Ratnner & Mastrota 2018, Rattner & Harvey 2021). 
En la forma letal o clínica el sangrado que se produ-
ce, tanto internamente como externamente, suele 
ser espontáneo y de variable intensidad. Dado que 
los RA inhiben y causan depleción de los factores de 
coagulación previamente citados, los mecanismos 
homeostáticos de coagulación de la sangre fallan, lo 
que resulta en hemorragias y coagulopatías observa-
das en diferentes órganos. La persistencia de estos 
desórdenes de la coagulación resulta en shock hipo-
volémico, hemorragias intracraneales y muerte (efec-
to letal) (Stone et al. 1999, Watt et al. 2005, Rattner et 
al. 2010, 2014a, Justice-Allen & Loyd 2017, Murray 
2017, 2018). 

Los efectos subletales o subclínicos de los RA en 
aves rapaces de vida libre son difíciles de reconocer, 
cuantificar e interpretar biológica y diagnósticamen-
te (Vyas et al. 2017, 2022). Se ha sugerido que estos 
efectos subletales son de por si suficientes para com-
prometer a las aves rapaces (Rattner & Mastrota 2018, 
Vyas et al. 2022). Estas son raramente admitidas en 
centros de rehabilitación como resultado de los efec-
tos subletales o subclínicos de la IRA por sí solos. Es 
de esperar que estos efectos subletales o subclínicos 
ocurran ante concentraciones hepáticas muy bajas de 
RA (Rattner et al. 2011, 2014b, 2020, Vyas et al. 2022). 
Otros efectos de los RA a bajas concentraciones serían 

sobre el sistema inmunitario, causando inmunodefi-
ciencia y predisponiendo a estas aves a enfermeda-
des infecciosas, fenómeno ampliamente descrito en 
mamíferos (Rattner et al. 2014b, Fraser et al. 2018, 
Serieys et al. 2018, Rattner & Harvey 2021). Recien-
temente, Carrera et al. (2024) sugieren que los indivi-
duos debilitados debido a enfermedades infecciosas 
o parasitarias podrían ser más propensos a una alta 
exposición a RA y serían más sensibles a sufrir efectos 
graves a dosis más bajas de estos. Otras manifestacio-
nes de los efectos subletales o subclínicos de los RA 
podrían englobarse en cambios en el comportamien-
to, peso y estado físico de las aves rapaces afectadas, lo 
que impactaría en su actividad diaria, el éxito de caza, 
productividad y motricidad, incrementando la tasa de 
muerte accidental y/o prematura (colisión con vehícu-
los y estructuras humanas, depredación, etc.) (Stone 
et al. 2003, Knopper et al. 2007, Herring et al. 2023).

El rango de hemorragias causadas por los RA en 
aves rapaces es muy variado, desde aquellas franca-
mente evidentes y macroscópicas a microhemorragias 
detectadas por histopatología (Stone et al. 1999, Ratt-
ner et al. 2011). En los casos de intoxicación clínica, 
los órganos internos son más propensos al sangrado, 
tanto espontáneo como por resultado de traumatismos 
(Stone et al. 1999, 2003, Redig & Arent 2008, Murphy 
2012, 2018, Murray 2017). Por ejemplo, es posible 
observar hematomas subcutáneos y hemorragias na-
sales (epistaxis) y oculares (hipema). En piel y en las 
mucosas oral y cloacal es posible observar petequias, 
equimosis y/o sufusiones. La hemostasia, al punzar un 
vaso sanguíneo, puede estar retardada o ser difícil de 
lograr. Asociado a estas hemorragias, y dependiendo 
de la severidad del cuadro clínico, puede observarse 
variados grados de anemia, sospechada por la palidez 
de las membranas mucosas y confirmada por pruebas 
de laboratorio (hematocrito, recuento de eritrocitos). 

Efectos de los RA sobre las poblaciones de aves 
rapaces

Como otras amenazas y noxas de origen antrópi-
co, el mayor impacto de los RA sobre las poblaciones 
de aves rapaces se observa cuando las causas de mor-
talidad adicional se suman a las de mortalidad natural 
(Newton 1979, 1998). La mortalidad adicional deri-
vada del uso de biocidas, por ejemplo los pesticidas 
organoclorados (Ratcliffe 1970, Newton 1979, Redig & 
Arent 2008, Padayachee et al. 2023) y fármacos uti-
lizados en medicina veterinaria, como el diclofenaco 
sódico y otros antiinflamatorios no esteroideos, han 
sido responsables de reducir las poblaciones de aves 
rapaces a nivel mundial, ya sea solos o combinados 
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con otras amenazas antrópicas (Oaks et al. 2004, 
Naidoo et al. 2010, Eleni et al. 2019, Plaza et al. 2019, 
Herrero-Villar et al. 2021, González et al. 2023). Esto 
es de gran importancia y motivo de preocupación 
para poblaciones ya reducidas o amenazadas, geográ-
ficamente aisladas, metapoblaciones y estrategas “K”, 
las que serían más sensibles a la mortalidad adicional 
causada por los RA (Newton 1979, Gómez et al. 2022). 

En las últimas décadas comenzó a recabarse evi-
dencia del impacto de los RA sobre las poblaciones de 
aves rapaces. Por ejemplo, estudios llevados a cabo en 
Australia mostraron un declive poblacional coinciden-
te con la introducción de rodenticidas en Queensland 
(Young & De Lai 1997). Observaciones similares rea-
lizadas en Taiwán sobre los Milanos Negros (Milvus 
migrans) identificaron una marcada reducción en las 
poblaciones de esta especie asociada a la utilización 
de RA y carbofurán (Hong et al. 2018). En Alaska, unas 
420 aves, incluyendo 46 Águilas Calvas (Haliaetus leuco-
cephalus) murieron tras la aplicación de RA al intentar 
controlar la población de ratas presentes en una isla 
(Borrell 2011, Lovett 2012). Las poblaciones del Halcón 
Sacre (Falco cherrugi) en Mongolia y del Águila Imperial 
(Aquila heliaca) en Rusia, todas clasificadas bajo algún 
grado de amenaza, mostraron una reducción en el nú-
mero de parejas reproductoras luego de la aplicación 
de RA (Gombobaatar et al. 2004, Novgorod et al. 2010). 
En un estudio reciente, Buechley et al. (2019) propone 
a los RA como una posible causa de la disminución del 
Halconcito Colorado en Norteamérica. Martínez-Pa-
dilla et al. (2017) observaron que volantones del Cer-
nícalo Europeo (Falco tinnunculus) con bromadiolona 
en sangre presentaron una menor masa corporal que 
aquellos volantones sin exposición. Recientemente, 
Roos et al. (2021), demostraron una correlación entre 
el uso de RA y la reducción de la poblacional anual en 
el Cernícalo Europeo, relacionados tanto con la con-
centración de bromadiolona como al uso de RASG. 

Intoxicación por RA: diagnóstico pre mortem

El diagnóstico pre mortem de exposición a los RA 
e IRA en aves rapaces es difícil (Redig & Arent 2008, 
Murphy 2012, 2018, Murray 2018). Al trabajar con indi-
viduos silvestres raramente se cuenta con una historia 
clínica o anamnesis, lo que orientaría a este diagnóstico 
o a uno de sus diagnósticos diferenciales, por ejemplo 
trauma, en animales domésticos o aves cautivas. Así, 
la información epidemiológica local, o el conocimiento 
del uso de RA en el territorio, área de campeo o acción 
y región de donde provienen las aves apoyaría la inclu-
sión de los RA en el diagnóstico pre mortem en aves de 
presa. Sin embargo, la ausencia de esta información no 

permite excluir la sospecha de exposición a RA o IRA.

Los RA deben ser siempre considerados como 
una de las principales causas de coagulopatías y he-
morragias en aves rapaces, sobre todo en ausencia 
de trauma (Stone et al. 1999, Thomas et al. 2011, Mu-
rray 2017, 2018), aunque este puede desencadenar 
un problema de coagulación preexistente, e incluso 
hacer evidente una IRA subclínica. Un amplio elenco 
de signos clínicos puede acompañar a una IRA (Stone 
et al. 1999, Redig & Arent 2008, Murphy 2012, 2018, 
Murray 2018). El examen físico usualmente revela 
aves con variable condición física, peso y masa cor-
poral, desde aves normales a aquellas con signos de 
emaciación, dependiendo de la severidad y duración 
de los signos clínicos, de los niveles y frecuencia de 
RA ingeridos y bioacumulados, y de la presencia de 
estas. En ausencia de comorbilidades, diversas ma-
nifestaciones de hemorragia externa suelen eviden-
ciarse con relativa facilidad; por ejemplo, epistaxis 
y hemorragias subcutáneas o intraoculares, de fácil 
detección (Fig. 7). 

No siempre ante una IRA se observan hemorra-
gias externas o son estas de inmediato reconocimien-
to. Las hemorragias pueden también ser internas 
(intracelómicas) y de difícil diagnóstico. Es posible 
sospechar de las mismas si se observa sangre en las 
deyecciones (uratos y heces) o en secreciones nasales 
y en la tráquea, o investigar su presencia a través de 
métodos complementarios de diagnóstico tales como 
ecografía o laparoscopía. Inicialmente la anemia (pa-
lidez de mucosas y reducción en el número de glóbu-
los rojos circulantes) acompañante puede ser leve y 
regenerativa, con un índice de reticulocitos (glóbulos 
rojos inmaduros presentes en sangre periférica) ele-
vado. A mayor cronicidad del problema, presencia de 
comorbilidades y debilitamiento general puede llegar 
a observarse anemia moderada a severa y del tipo 
arregenerativa (no hay producción de reticulocitos). 

El diagnóstico diferencial de estos síndromes 
anémicos y hemorrágicos causados por RA debe 
considerar y descartar otras causa de coagulopatías 
hemorrágicas (las que pueden iniciar o exacerbar las 
hemorragias por RA), tales como el ya mencionado 
trauma, desordenes primarios de la coagulación, en-
fermedad y/o falla hepática o renal, fármacos como la 
aspirina o rifampicina, coagulación intravascular di-
seminada, trombocitopenias, intoxicación por plomo 
o zinc, ofidismo, parásitos gastrointestinales y mal-
nutrición, entre otros (Chitty & Lierz 2008, Martinho 
2009, Samour 2016, Garvin et al. 2020, Scott 2020). 

La presencia de comorbilidades puede exacerbar 
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los efectos letales/clínicos de la IRA. Por ejemplo, la 
intoxicación por plomo proveniente de municiones es 
un problema global y altamente prevalente entre las 
aves rapaces, incluso en Sudamérica (Saggese et al. 
2009, Nguyen et al. 2018, Plaza et al. 2019, Garvin et 
al. 2020). Esta intoxicación puede causar anemias y 
hemorragias (Nguyen et al. 2018, Garvin et al. 2020) 
y siempre debería ser investigada en aves carroñeras, 
tanto facultativas como obligadas. Anemias hemolíti-
cas causadas por hemoparásitos del género Plasmo-
dium suelen ser diagnosticadas en especies suscep-
tibles (Cooper 2001, Tavernier et al. 2005, Willette et 
al. 2009, Marzal 2012). Sin embargo, la relación entre 
RA y otras comorbilidades toxicológicas o infecciosas 
han sido poco estudiadas hasta el presente en aves 
rapaces. Esto merece mayor investigación, principal-
mente en el Cono Sur, donde los estudios biomédicos 
sobre este grupo son limitados. 

En todos los casos de aves rapaces admitidas 
para su atención, rehabilitación y la investigación 
medico veterinaria de las mismas deben seguirse las 
practicas generales recomendadas en medicina aviar 
(Samour 2016, Scott 2020). Nevill (2009) discute en 
detalle el diagnóstico y aproximación para diferentes 
problemas de coagulación en aves. Fair et al. (2010) 
aportan valiosas recomendaciones sobre bioseguri-
dad y manejo de aves silvestres.

Si bien la exposición a RA puede resultar en IRA 
clínica o letal, aves expuestas y con residuos de RA en 
hígado y/o en sangre pueden no presentar ningún sig-
no clínico ni anomalía de laboratorio (IRA subclínica 
o subletal) (Rattner & Harvey 2021). Por ejemplo, en 
un estudio realizado sobre 43 Aguiluchos de Cola Roja 
(Buteo jamaicensis), 14 exhibieron signos de IRA pre 
mortem con concentraciones detectables de estos en 
sangre (Murray 2020). Al ser analizados los cadáveres 
de todos los animales, en aquellos que no presentaron 
signos clínicos se encontraron RA en el hígado, pero 
no en la sangre. Aunque se ha sugerido que la presen-
cia de RA en sangre podría ser de utilidad únicamente 
para la detección de toxicosis clínica (Rattner & Har-
vey 2021), estudios recientes evidencian que los RA 
pueden ser detectados en sangre de un alto porcen-
taje de aves rapaces que no llegan a mostrar signos 
clínicos (Oliva-Vidal et al. 2022). 

Actualmente se cuenta con un amplio catálogo de 
pruebas de coagulación que permiten diagnosticar y/o 
caracterizar la etiología de estos desórdenes (Nevill 
2009). Algunas de estas pruebas de coagulación han 
sido evaluadas en aves, con resultados no concluyen-
tes debido a las variaciones que existen a nivel intra e 
interespecífico, a la ausencia de valores de referencia, 
a condiciones ambientales variables y a dificultades 
en su interpretación (Nevill 2009, López-Perea et al. 
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Figura 7. A) hemorragia intratorácica, bronquial y pulmonar en Lechuza de Campanario, B) hipema (hemorragia en la cámara anterior del globo 
ocular) en un Ñacurutú (Bubo virginianus), C) hemorragia aguda subcutánea severa en un Ñacurutú, D) epistaxis (sangrado por las narinas) en 
un Águila Calva (Haliaetus leucocephalus), E) hematoma subcutáneo en Lechuza Barrada (Strix varia), F) hemorragias intracraneal y cerebral en 
Lechuza de Campanario. Fotos: G. Ortiz (A y F), M. D. Saggese (B y D), C. Cummings-A Place Called Hope https://www.aplacecalledhoperaptors.
com/) (C y E).

https://www.aplacecalledhoperaptors.com/
https://www.aplacecalledhoperaptors.com/
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2015, Hindmarch et al. 2019). Las diferentes pruebas 
de coagulación utilizadas en mamíferos (e.g tiempo 
de protrombina), no son fácilmente aplicables en las 
aves (Nevill 2009, Hindmarch et al. 2019, Dickson et 
al. 2020). Una prueba que puede brindar evidencia 
sobre la presencia de coagulopatías, si bien no permi-
te el diagnóstico de IRA, es el tiempo de coagulación 
(Hindmarch et al. 2019), comparando el tiempo que 
tarda en coagular la sangre de un ave rapaz con sos-
pecha de IRA con los tiempos obtenidos en aves sanas. 
Un tiempo relativamente prolongado, apoya un diag-
nóstico de coagulopatía; esta técnica es de relativa 
aplicabilidad clínica debido a que numerosos factores 
ambientales (por ej. temperatura) pueden afectarla 
(Hopf-Dennis et al. 2022). El futuro reconocimiento y 
validación de biomarcadores plasmáticos y pruebas 
de coagulación en aves rapaces podrían contribuir al 
diagnóstico de esta intoxicación (Sanchez-Barbudo et 
al. 2012, Valverde et al. 2021). 

Para una futura determinación de RA, es conve-
niente tomar muestras de sangre con un anticoagu-
lante (e.g. heparina o EDTA) y conservar la sangre o 
plasma a -20 o -80 °C (Oliva-Vidal et al. 2022), más allá 
de su potencial valor diagnóstico inmediato, cuando 
esto resulte posible en nuestra región. También es po-
sible realizar pruebas de coagulación sobre muestras 
frescas de sangre con citrato sódico como anticoa-
gulante y menos de 8 horas después de su obtención 
(Toulon et al. 2017). En caso de poder realizar estas 
pruebas, un resultado positivo sustenta el diagnóstico 
clínico y presuntivo de IRA, la continuación de tra-
tamientos implementados empíricamente, y aporta 
evidencia sobre un problema ecotoxicológico local. 

Manejo y tratamiento de aves rapaces con IRA

El manejo y tratamiento de aves rapaces con 
diagnóstico clínico, presuntivo o confirmado de IRA 
no solo consta de la terapéutica específica (antídoto) 
para esta intoxicación, sino que debe incluir también 
medidas de sostén, estabilización cardiovascular y 
respiratoria, mantenimiento de la temperatura cor-
poral, y resolución de la deshidratación y desequili-
brios electrolíticos (Murray & Tseng 2008, Redig & 
Arent 2008). Además, deberá prestarse particular 
atención a la prevención de los problemas asociados 
a la internación y cautiverio (como traumatismo, neu-
monía por aspiración, daños al plumaje, aspergilosis 
y pododermatitis, entre otros) y a mantener o recupe-
rar la condición corporal. Diversas revisiones sobre el 
manejo médico veterinario general de aves rapaces 
se encuentran disponibles (Huckabee 2000, Cooper 
2001, Joseph 2006, Chitty & Lierz 2008, Willette et 

al. 2009, Scott 2020). Su discusión detallada en este 
trabajo escapa al objetivo de esta publicación. 

El tratamiento general de la IRA debe seguir las prác-
ticas generales recomendadas para otras intoxicaciones 
en aves rapaces (Redig & Arent 2008). Sin embargo, el 
tratamiento específico de la IRA en este grupo sigue 
siendo empírico y extrapolado de lo implementado en 
animales domésticos y seres humanos (DeClementi & 
Sobczak 2018, Lugo 2019, Isackson & Irizarry 2022). Las 
siguientes recomendaciones están basadas en la litera-
tura consultada (Anónimo 2002, Redig & Arent 2008, 
Murphy 2012, 2018, Sánchez-Barbudo et al. 2012, Sa-
mour 2016, Isackson & Irizarry 2022) y en la experiencia 
profesional de los autores y de otros colegas. 

Un importante principio en toxicología es el de 
remover el tóxico del cuerpo del animal. Sin embargo, 
en la mayoría de los casos de IRA, las aves rapaces 
llegan luego de varios días, semanas e incluso meses 
de exposición repetida a los RA, y sin la posibilidad 
de alimentarse recientemente; en estas situaciones 
esta medida es de limitada o nula aplicación y efecti-
vidad clínica. Incluso en animales con una exposición 
primaria, la aparición de signos clínicos se produce 
muchas horas después de la ingestión del cebo, por lo 
que esta pauta tampoco es aplicable. 

La transfusión de sangre entera y/o de plasma 
conteniendo factores de coagulación, trombocitos 
y eritrocitos contribuye a suplir la ausencia de estos 
factores, promover la hemostasis y aumentar el aporte 
de oxígeno a los tejidos (Martinho 2009, Gómez-Ada-
ros 2022). Además, la presencia de albúmina y otras 
proteínas en sangre o plasma permite recomponer la 
presión oncótica en casos avanzados de anemia e hi-
poproteinemia. Usualmente se recomienda la trans-
fusión de sangre o plasma en casos de coagulopatías 
evidentes y hematocritos por debajo del 15-20%, en 
base a la decisión profesional de acuerdo con cada 
caso. La administración de transfusiones de sangre 
y plasma en aves ha sido detallada en otros trabajos 
(Martinho 2009, Gómez-Adaros et al. 2022). 

La administración de fitomenadiona o vitamina 
K1 se recomienda como tratamiento específico para 
la IRA (Redig & Arent 2008, Murray 2018, Scott 2020). 
Se debe aplicar inicialmente por la vía intramuscular 
(IM), dado que se han reportado casos de anafilaxia 
al administrarla por vía endovenosa (Murphy 2012, 
2018). Debe continuarse con su administración por 
vía oral, acompañada de una ingesta rica en conteni-
do proteico y graso, ya que esta vitamina K1 es liposo-
luble. La frecuencia de administración recomendada 
es cada 8-12 horas a una dosis de 2.2 mg/kg inicial-
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mente, seguida de la administración cada 24 horas a 
una dosis de 1.1 mg/kg hasta resolución de los signos 
clínicos. Es importante mencionar que otras formas 
de esta vitamina, como la vitamina K3 (menadiona) y 
la vitamina K4 (menadiol) no son efectivas como sus-
tituto terapéutico de la vitamina K1. El tratamiento 
debe ser continuado por varias semanas, incluso por 
meses. La reversión de los signos clínicos, normaliza-
ción de pruebas de laboratorio, hematocrito, test de 
coagulación y estado general del paciente determina-
rán el curso clínico y duración de la terapia. 

Investigación post mortem de la exposición a RA e IRA

El diagnóstico post mortem de la exposición a RA 
e IRA se basa en la historia, signos clínicos y resultado 
de los estudios complementarios más los resultados 
de necropsia, otras investigaciones post mortem 
rutinarias y la confirmación de residuos de RA en 
hígado y otros tejidos (Berny et al. 1997, Stone et al. 
1999, Redig & Arent 2008, Murray 2018). La necrop-
sia de aves rapaces con sospecha de IRA debe seguir 
protocolos establecidos previamente y ser metódica e 
incluir todas las posibilidades diagnósticas y estudios 
disponibles en función de la historia, signos clínicos, 
curso y respuesta al tratamiento, para determinar la 
causa de muerte de un animal y no solo perseguir la 
investigación toxicológica de RA (Saggese 2024). De 
no realizarse inmediatamente una batería completa 
de pruebas diagnósticas, se aconseja la conservación 
de muestras apropiadas para futuros estudios micro-
biológicos, toxicológicos y anatomopatológicos (Sag-
gese 2024). Si se sospecha de IRA, deberá colectarse 
tejido hepático y/o sangre. 

La necropsia de un ave rapaz con diagnóstico 
presuntivo o clínico de intoxicación por RA es muchas 
veces inconcluyente, aun en presencia de lesiones 
compatibles. Solo permitirá un diagnóstico presunti-
vo o anatomopatológico, en función de las hemorra-
gias observadas, pero no etiológico, al no presentar 
esta intoxicación ninguna lesión patognomónica o 
exclusiva de esta condición. Además de las hemorra-
gias evidenciadas externamente, los órganos internos 
pueden estar pálidos. Los sacos aéreos, pericardio, 
tórax, abdomen, tráquea y encéfalo son algunos de los 
sitios donde pueden observarse diferentes grados de 
hemorragia. Las hemorragias internas acompañadas 
de coágulos suele ser indicador de causas traumáticas 
o vasculares de hemorragia. La ausencia de coágulos 
tanto en estas cavidades como intracardíacos y en 
grandes vasos pueden ser compatibles con IRA. 

El observar palidez en membranas mucosas y 

órganos como hígado, bazo, y pulmones, la presencia 
de hemorragias intracelómicas y en órganos, junto 
a la presencia de sangre en heces (hematoquecia) 
en ausencia de trauma suelen apoyar también el 
diagnóstico presuntivo de IRA (Stone et al. 1999). 
Es importante recordar que aun ante la presencia o 
historia de trauma la IRA puede ser una morbilidad 
concurrente (Murray 2011, Rattner & Harvey 2021). El 
análisis histopatológico puede revelar microhemorra-
gias no detectadas durante el examen macroscópico 
de los diferentes órganos y apoyar un diagnóstico de 
IRA, pero es importante recordar que por sí solas es-
tas microhemorragias tampoco son patognomónicas 
(exclusivas de IRA). El diagnóstico clínico patológico 
presuntivo puede realizarse en base a lo mencionado 
previamente, siempre y cuando se tenga suficiente 
evidencia y se hayan considerado y excluido otros 
diagnósticos diferenciales. 

Investigación toxicológica de la IRA

El diagnóstico toxicológico de la IRA es la única 
forma de confirmar la presencia de estos compuestos 
en un organismo. Actualmente, en Argentina y otros 
países de Sudamérica, no hay laboratorios que pue-
dan determinar, de forma sistemática y accesible, RA 
en tejidos animales (Lugo et al. 2019, Saggese et al. 
2022). Sin laboratorios que realicen estos análisis, es 
imposible determinar la presencia de estos compues-
tos en tejidos animales y estimar la extensión de esta 
problemática sobre la fauna silvestre, información 
necesaria y fundamental para su prevención y mane-
jo. Esto ha sido un impedimento para estudiar eventos 
recientes de mortalidad en aves rapaces del Noroeste 
patagónico, presumiblemente asociados a la utiliza-
ción de RA y otros plaguicidas o biocidas (V. Ojeda, 
datos sin publicar), y generó un reciente llamado de 
atención hacia la comunidad científica internacional 
sobre el problema de los RA para la fauna silvestre en 
la Patagonia, y la necesidad de contar con personal 
entrenado, capaz de desarrollar localmente estas de-
terminaciones como una primera aproximación a su 
solución (Saggese et al. 2022). 

Las restricciones y regulaciones internacionales 
hoy vigentes a causa de posibles riesgos sanitarios 
impiden el envío de muestras de tejido fresco, tal 
como se necesita para el análisis de estos compuestos 
en laboratorios especializados del exterior (Gómez et 
al. 2022, y experiencia de los autores). Consideramos 
que el desarrollo de los procedimientos analíticos en 
Argentina en colaboración con otros países de la re-
gión para la detección del conjunto de RA de primera 
y segunda generación es fundamental para poder di-
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mensionar el nivel del problema ambiental y sanitario 
que enfrentamos y promover mejores estándares de 
aplicación de rodenticidas y su reemplazo por otras 
técnicas de control de roedores en todos los casos 
en que estos compuestos resulten especialmente 
agresivos o de riesgo para animales no blanco. En 
aquellos países donde se cuenta con la posibilidad 
de detectar la presencia de RA, su detección se basa 
actualmente en técnicas de cromatografía líquida de 
alto rendimiento acoplada a espectrometría de masas 
(Middleberg & Homan 2012, Sánchez-Barbudo et al. 
2012) (Material suplementario B). Estas son técnicas 
complejas que requieren capacitación y equipamien-
to especial y son de muy alto costo. De esta manera se 
pueden detectar y cuantificar RA en tejidos como re-
sultado de su bioacumulación (López-Perea & Mateo 
2018). En la mayoría de los laboratorios de Europa y 
Norteamérica donde se realizan estas determinacio-
nes, los límites de detección (la concentración mínima 
de un analito que se puede detectar) y cuantificación 
(la concentración mínima de un analito medida den-
tro de los límites especificados de precisión y exacti-
tud) establecidos para los diferentes RA pueden ser 
de 0.10 ng/g y 1 ng/g, respectivamente, aunque estos 
valores varían con los distintos laboratorios (Middle-
berg & Homan 2012, Gómez et al. 2022). 

Clásicamente el hígado, de alta afinidad por estos 
compuestos, constituye el órgano de elección para su 
investigación cualitativa y cuantitativa. Se necesitan 
entre 1 a 2.5 gramos de tejido hepático (Gómez et al. 
2023), usualmente de muestras colectadas a partir de 
animales muertos o que fueron sacrificados por indi-
cación médico-veterinaria en centros de rehabilita-
ción. Esto resulta en un sesgo en cuanto a la población 
estudiada y al origen de la información (Murray 2011, 
Oliva-Vidal et al. 2022), ya que estos animales no re-
flejan la verdadera prevalencia de exposición dentro 
de una población, pero son eficientes indicadores del 
uso y biodisponibilidad de los RA en las zonas donde 
habitan (Gómez et al. 2022). 

El uso de sangre entera, plasma o suero para la de-
tección de RA permite su investigación en aves rapa-
ces de vida libre vivas capturadas temporalmente para 
la toma de muestras (Murray 2020, Oliva-Vidal et al. 
2022). Esta aproximación permite también el investi-
gar a polluelos aún en el nido, los cuales pueden estar 
expuestos desde esta temprana edad a estos compues-
tos (Martínez-Padilla et al. 2017, Powolny et al. 2020, 
Badry et al. 2021, Spadetto et al. 2024, Saggese et al. 
datos sin publicar). Otra de las ventajas de esta apro-
ximación es que permite evitar el sesgo que animales 
recibidos para rehabilitación o que son encontrados 

muertos tienen añadidos, al tomar las muestras de 
animales presuntamente sanos. Su hallazgo en sangre 
indicaría una exposición reciente. Sin embargo, la 
presencia de resultados negativos a partir de muestras 
de sangre no puede descartar una exposición a RA; 
diversos estudios sugieren que esta técnica no es su-
ficiente para detectar todas las aves expuestas a estos 
en forma subclínica (Murray 2020, Rattner & Harvey 
2021, Gómez et al. 2022), si bien tendría mayor valor 
en la detección de IRA clínica (Rattner & Harvey 2021). 
Estas variaciones en sensibilidad aun no son bien en-
tendidas y podrían obedecer a numerosas variables ya 
que estudios recientes realizados en aves carroñeras 
capturadas vivas y en Halconcito Colorado arrojaron 
prevalencias de RA en sangre suficientes para demos-
trar exposición a nivel poblacional y evaluar el riesgo 
de exposición utilizando un elevado número de indi-
viduos (Buechley et al. 2019, Oliva-Vidal et al. 2022, 
Saggese en prensa). De acuerdo con Oliva-Vidal et al. 
(2022), es necesario realizar estudios para compren-
der la relación entre niveles sanguíneos y hepáticos 
de RA. La presencia de rodenticidas se ha podido tam-
bién detectar en otros tejidos como músculo (Alabau et 
al. 2020) o médula ósea (R. Mateo, obs. pers.). También 
hay que destacar la posibilidad de detección de RA en 
muestras no invasivas, como pueden ser las egagrópi-
las (Elliot et al. 2014) o en heces (Rached et al. 2023), lo 
que abre la posibilidad de monitorear RA en especies 
raras o de difícil captura. 

Alternativas al uso de RA

La presencia de ratas y ratones comensales es 
resultado de numerosos factores que promueven 
su adaptabilidad a los medios donde se producen, 
acumulan, comercializan y/o desechan alimentos y 
subproductos alimenticios de origen o uso humano. 
Sumado a su gran capacidad de adaptación, su am-
plitud dietaría, limitado impacto de depredadores, 
y la abundancia de alimento (más de 15 millones de 
toneladas de basura son producidas anualmente en 
Argentina, MAD 2021b), contribuyen a que persistan 
y se multipliquen, afectando la salud humana y ani-
mal, la calidad de vida y la economía global. Pese a 
todos los esfuerzos, no sorprende que la efectividad 
de los RA sea insuficiente e inadecuada para limitar 
las poblaciones de estos roedores (Rost et al. 2009, 
Greaves 2015, Goulois et al. 2017, Chua et al. 2022) 
al generar una presión selectiva como resultado de su 
uso y abuso (Chua et al. 2022). Además, los roedores 
pueden mostrar resistencia a estos compuestos como 
resultado de mutaciones del tipo polimorfismo de 
nucleótido único (PNU) en el gen VKORC1 (Rost et al. 
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2009, Baldwin et al. 2014, Cowan et al. 2016, Goulois 
et al. 2017, Chua et al. 2022, Ruiz-López et al. 2022). 
Para el caso de la región analizada, los autores no han 
encontrado ninguna información científica sobre la 
efectividad del uso de RA para reducir y eliminar los 
roedores plaga. Sin embargo, su uso persiste y parece-
ría ir en aumento en Argentina (C. Ale, inédito).

En los últimos años han surgido diferentes méto-
dos para controlar a las especies de roedores comen-
sales, sin que ninguno sea completamente eficaz. Es 
por ello que debe promoverse el “control integrado”, 
el cual se basa en la aplicación de los principios de 
exclusión, saneamiento y monitoreo: esto incluye 
reducir las instancias de convivencia con roedores 
a través de favorecer la presencia de los depredado-
res naturales (y eventualmente domésticos, siempre 
minimizando su efecto sobre otra fauna silvestre no 
blanco), la limpieza del perímetro de las viviendas y 
comercios, el mejoramiento edilicio (ej. sellado de ori-
ficios con malla metálica para prevenir su ocupación) 
y el implementar estrategias de gestión de alimentos 
y de residuos orgánicos (APN-PNLP 2023).

En el caso de perseguirse la eliminación de roedo-
res, la más importante recomendación es el llevarla a 
cabo por medio de métodos que no requieran del uso 
de RA. Diferentes modelos de trampas permiten la 
muerte y/o captura de los roedores, donde es impor-
tante satisfacer ciertos principios de bioseguridad y 
cumplir estrictamente con pautas de bienestar animal 
y trato humanitario (Baker et al. 2022). Las trampas 
letales mecánicas (con o sin cebo de alimento) matan 
rápidamente por decapitación; deberían colocarse 
únicamente en interiores, donde pueden ser supervi-
sadas, en lugares donde no accedan niños, animales 
domésticos ni silvestres, y colocadas en recipientes 
o espacios que solo permita el ingreso de roedores. 
Bien utilizadas, constituyen un método humanitario 
y rápido para la eliminación de roedores individuales. 

Existen otros modelos de trampas que permiten 
la captura de un gran número de roedores, los cuales 
se utilizan sólo en ámbitos rurales en situaciones muy 
excepcionales como las “ratadas” (el aumento explosi-
vo de las poblaciones de ciertas especies de roedores 
en un período de tiempo muy corto y como resultado 
de la floración de plantas que sirven de alimento). 
Esta aproximación es muy efectiva ya que permite 
atrapar un gran número de animales, pero deben co-
nocerse los pormenores de su fabricación y aplicación 
(las mismas, incluyendo fotos, pueden verse en APN-
PNLP 2023). Desaconsejamos enfáticamente el uso de 
trampas comerciales basadas en pegamentos en las 
que los roedores quedan adheridos sin posibilidad de 

desprenderse. En primer lugar, el roedor suele estar 
aún vivo al momento de encontrarlo, con liberación 
de fluidos como orina y saliva incrementados por 
el estrés de su captura, lo cual aumenta el riesgo de 
transmisión de enfermedades zoonóticas. A su vez, en 
caso de morir en ellas, la lenta y prolongada agonía 
(por inanición) sería una forma de maltrato animal 
y un método inhumano de control. Adicionalmente, 
constituye un riesgo reconocido para otras especies 
animales no blanco, incluyendo animales silvestres 
y domésticos, de ser estos roedores consumidos, o 
bien al quedar adheridos a estas trampas. En cuanto 
a opciones a nivel industrial, agrícola o institucional 
(es decir, para grandes escalas espaciales), además 
de seguir los conceptos de exclusión (impedir el in-
greso), higiene y sanidad para el control de roedores, 
otras recomendaciones para su control incluyen el 
desarrollo de compuestos que promueven el biocon-
trol genético (Gierus et al. 2022), la esterilización 
química (Massei et al. 2023) o el uso de rodenticidas 
menos bioacumulativos, por ejemplo al seleccionar 
los estereoisómeros de RA de rápida eliminación por 
los roedores (Damín-Pernik et al. 2016, 2017, Lattard 
& Benoit 2018), disminuyendo el impacto sobre espe-
cies no blanco (Lefebvre et al. 2020), incluidas las aves 
rapaces (Fourel et al. 2017).

El uso limitado de RA es, cada vez más, intensa-
mente controlado en países del hemisferio norte. Por 
ejemplo, en algunos estados de los EEUU, los RASG 
están limitados a situaciones específicas (plantas al-
macenadoras de alimento, molinos y harineras, cria-
deros de animales, y otras aplicaciones locales espe-
cíficas) donde es esencial controlar a las poblaciones 
de roedores comensales. Su utilización en estos casos 
es realizada bajo estrictas normas de aplicación y 
monitoreo de su efectividad, como también del poten-
cial impacto sobre la fauna silvestre. Recientemente, 
se han implementado también otras medidas para 
reducir el impacto de los RA. Por ejemplo, la legisla-
tura de California en el año 2019 aprobó la Ley 1788, 
prohibiendo o limitando el uso de RASG en este estado 
(Quin et al. 2019) y en 2023 aprobó una moratoria para 
la difacinona (Ley 1322), un RAPG (Saggese et al. en 
prensa). En caso de utilizarse, Thomas et al. (2011) re-
comiendan limitar el uso de RA a áreas con alta carga 
y/o actividad de roedores, acompañado de búsquedas 
periódicas y frecuentes para remover roedores muer-
tos o moribundos y reducir exposición de especies no 
blanco a cebos y a roedores intoxicados. Mas allá de 
la legislación existente, el hacer cumplir las leyes es 
esencial, siendo este el punto más débil en toda cade-
na de monitoreo y control del uso de pesticidas. 
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El control biológico de roedores por parte de aves 
rapaces ha sido ampliamente reportado en la litera-
tura (Peleg et al. 2018, Paz Luna et al. 2020, Jareño et 
al. 2023). Por ejemplo, una experiencia realizada en 
España para el control del Topillo Campesino (Micro-
tus arvalis) llevada adelante por GREFA (Grupo para la 
Rehabilitación de la Fauna Autóctona y su Hábitat) y 
colaboradores desde el 2009 es la gestión integrada 
de lucha contra la explosión demográfica de estos 
roedores bajo parámetros de sostenibilidad y efectivi-
dad acordes con la productividad agraria y el fomento 
de la biodiversidad (Anónimo 2023b). Entre algunas 
medidas implementadas se destaca el arado de te-
rrenos con altas densidades de colonias de topillo, la 
rotación de cultivos, la instalación de posaderos para 
facilitar la caza a los depredadores y la colocación 
de cajas nido para facilitar el lugar de nidificación a 
las especies aviares depredadoras como el Cernícalo 
Europeo, la Lechuza Común y el Mochuelo (Athene 
noctua), así como también la instalación de refugios 
para carnívoros terrestres. Junto a estas medidas fue 
fundamental incorporar la educación ambiental pro-
moviendo la implicación de la sociedad local (Jareño 
et al. 2023, Anónimo 2023b). Experiencias similares 
con la colocación de cajas nido son raramente im-
plementadas en nuestra región (Bellocq & Kravetz 
1993, Muñoz-Pedreros et al. 2010, Liébana & Sarasola 
2013), principalmente con el fin de incrementar las 
poblaciones de aves rapaces, pero podrían ser una útil 
alternativa para el control de roedores en zonas ur-
banas, periurbanas y rurales, especialmente en áreas 
de Argentina y Sudamérica donde ciertas zoonosis 
transmitidas por roedores son endémicas (Charrel & 
de Lamballerie 2009, Figuereido et al. 2014).

CONCLUSIÓN Y RECOMENDACIONES

Soulé (1986) definió a la biología de la conserva-
ción como una ciencia de crisis dedicada al estudio 
y prevención de las causas responsables del vertigi-
noso declive poblacional y extinción de numerosas 
especies animales y vegetales iniciada en el siglo XX. 
Sumados, la destrucción y fragmentación de hábitat, 
la caza indiscriminada, la introducción de especies 
exóticas, el impacto de patógenos (y las enfermedades 
por ellos causadas) y el uso de diferentes biocidas y 
otros contaminantes ambientales, han contribuido a 
la disminución poblacional de muchas especies de 
aves rapaces (Saggese 2007). La utilización de deter-
minados plaguicidas, fármacos o diversas sustancias 
orgánicas persistentes a lo largo de la historia ha 
dado lugar a serios problemas de conservación para 
las aves rapaces a nivel global (Hickey & Anderson 

1968, Newton 1979, Goldstein et al. 1999, Oaks et al. 
2004, Swan et al. 2006, Cuthbert et al. 2016, Plaza et 
al. 2019, Padayacheck et al. 2023). En Argentina y en 
toda Sudamérica, los RA constituyen una amenaza 
para las aves rapaces que todavía no podemos evaluar 
correctamente. Esperamos que este trabajo aporte a 
un mejor reconocimiento de la amenaza que repre-
sentan los RA en esta región, con el objetivo último de 
reducir su impacto en aves rapaces. A su vez, espe-
ramos que fomente la implementación de la muy ne-
cesitada capacidad diagnóstica para la investigación 
de RA en una variedad de especies, tanto en Argen-
tina como en países vecinos. Consideramos que esto 
promoverá su reconocimiento dentro de organismos 
privados, estatales, entes reguladores y personal sa-
nitario y de las autoridades de aplicación en materia 
ambiental, actores clave dentro de la conservación de 
la vida silvestre y el enfoque de Una Salud.

Remarcamos que la búsqueda de soluciones para 
los problemas de conservación de las aves rapaces de 
la región debe ser inclusiva y multidisciplinar; don-
de todos los involucrados aporten a la identificación 
conjunta de soluciones que permitan mantener sanas 
a las poblaciones de aves rapaces y otras especies 
animales, sin recurrir al reemplazo de los RA por 
otros biocidas de igual o mayor ecotoxicidad, lo cual 
no soluciona el problema y hasta podría acentuarlo 
(Jácome et al. 2022). Así, el trabajo colectivo de las 
diferentes partes y la aplicación de medidas consen-
suadas permitirán obtener resultados efectivos y sos-
tenibles a largo plazo.

Finalmente, proponemos las siguientes acciones 
iniciales para reducir y/o eliminar el impacto de los 
RA sobre las especies no blanco en Argentina y otros 
países de Sudamérica: 

•	 Concientizar sobre el problema de los RA a los 
diferentes sectores sociales.

•	 De ser absolutamente necesario, utilizar los RA 
bajo condiciones reguladas y solo por profesio-
nales autorizados y acompañados de estrictos 
controles y seguimientos. 

•	 Promover la creación e implementación de leyes 
y regulaciones en base a la cuantiosa informa-
ción científica disponible y experiencia en otros 
países. 

•	 Implementar la disponibilidad de tecnología y 
capacitación local necesaria para la investigación 
toxicológica y eco epidemiológica de los RA en 
aves rapaces y otra fauna silvestre. 

•	 Fiscalizar y penalizar la comercialización y uso 
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de productos no autorizados por los organismos 
competentes a nivel nacional y provincial. 

•	 Promover la participación, colaboración y auto-
rregulación de compañías productoras de estos 
RA, como también de los responsables de su dis-
tribución, comercialización, fiscalización y uso 
final de los RA. 

•	 Promover los principios de Exclusión (prevenir 
el acceso, barreras mecánicas, eliminación de re-
fugios), Higiene (limpieza) y Sanidad (adecuada 
disposición de residuos) para reducir las pobla-
ciones de roedores comensales.

•	 Educar sobre el rol ecológico de los roedores sil-
vestres y las diferencias entre estos y roedores 
comensales. 

•	 Desarrollar programas de prevención y poner en 
práctica las recomendaciones ya existentes para 
situaciones puntuales donde desea reducirse el 
riesgo de exposición a zoonosis endémicas. 

•	 Monitorear la exposición a RA y otros venenos 
y tóxicos, tales como estricnina, carbofurano, y 
organofosforados, entre otros, que afectan a la 
fauna silvestre, dentro del marco de la Estrategia 
Nacional Contra el Uso de Cebos Tóxicos (Jácome 
et al. 2022).
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